145 resultados para data-driven simulation
Resumo:
We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
Techniques for modelling urban microclimates and urban block surfaces temperatures are desired by urban planners and architects for strategic urban designs at the early design stages. This paper introduces a simplified mathematical model for urban simulations (UMsim) including urban surfaces temperatures and microclimates. The nodal network model has been developed by integrating coupled thermal and airflow model. Direct solar radiation, diffuse radiation, reflected radiation, long-wave radiation, heat convection in air and heat transfer in the exterior walls and ground within the complex have been taken into account. The relevant equations have been solved using the finite difference method under the Matlab platform. Comparisons have been conducted between the data produced from the simulation and that from an urban experimental study carried out in a real architectural complex on the campus of Chongqing University, China in July 2005 and January 2006. The results show a satisfactory agreement between the two sets of data. The UMsim can be used to simulate the microclimates, in particular the surface temperatures of urban blocks, therefore it can be used to assess the impact of urban surfaces properties on urban microclimates. The UMsim will be able to produce robust data and images of urban environments for sustainable urban design.
Resumo:
We investigated the effect of morphological differences on neuronal firing behavior within the hippocampal CA3 pyramidal cell family by using three-dimensional reconstructions of dendritic morphology in computational simulations of electrophysiology. In this paper, we report for the first time that differences in dendritic structure within the same morphological class can have a dramatic influence on the firing rate and firing mode (spiking versus bursting and type of bursting). Our method consisted of converting morphological measurements from three-dimensional neuroanatomical data of CA3 pyramidal cells into a computational simulator format. In the simulation, active channels were distributed evenly across the cells so that the electrophysiological differences observed in the neurons would only be due to morphological differences. We found that differences in the size of the dendritic tree of CA3 pyramidal cells had a significant qualitative and quantitative effect on the electrophysiological response. Cells with larger dendritic trees: (1) had a lower burst rate, but a higher spike rate within a burst, (2) had higher thresholds for transitions from quiescent to bursting and from bursting to regular spiking and (3) tended to burst with a plateau. Dendritic tree size alone did not account for all the differences in electrophysiological responses. Differences in apical branching, such as the distribution of branch points and terminations per branch order, appear to effect the duration of a burst. These results highlight the importance of considering the contribution of morphology in electrophysiological and simulation studies.
Resumo:
The simulation and development work that has been undertaken to produce a signal equaliser used to improve the data rates from oil well logging instruments is presented. The instruments are lowered into the drill bore hole suspended by a cable which has poor electrical characteristics. The equaliser described in the paper corrects for the distortions that occur from the cable (dispersion and attenuation) with the result that the instrument can send data at 100 K.bits/second down its own suspension cable of 12 Km in length. The use of simulation techniques and tools were invaluable in generating a model for the distortions and proved to be a useful tool when site testing was not available.
Resumo:
In this paper the implementation of dynamic data reconciliation techniques for sequential modular models is described. The paper is organised as follows. First, an introduction to dynamic data reconciliation is given. Then, the online use of rigorous process models is introduced. The sequential modular approach to dynamic simulation is briefly discussed followed by a short review of the extended Kalman filter. The second section describes how the modules are implemented. A simulation case study and its results are also presented.
Resumo:
Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated lobal warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre’s coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single-pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 GtC by 2100 in a climate change simulation compared with an 80 GtC decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.
Resumo:
This paper introduces a method for simulating multivariate samples that have exact means, covariances, skewness and kurtosis. We introduce a new class of rectangular orthogonal matrix which is fundamental to the methodology and we call these matrices L matrices. They may be deterministic, parametric or data specific in nature. The target moments determine the L matrix then infinitely many random samples with the same exact moments may be generated by multiplying the L matrix by arbitrary random orthogonal matrices. This methodology is thus termed “ROM simulation”. Considering certain elementary types of random orthogonal matrices we demonstrate that they generate samples with different characteristics. ROM simulation has applications to many problems that are resolved using standard Monte Carlo methods. But no parametric assumptions are required (unless parametric L matrices are used) so there is no sampling error caused by the discrete approximation of a continuous distribution, which is a major source of error in standard Monte Carlo simulations. For illustration, we apply ROM simulation to determine the value-at-risk of a stock portfolio.
Resumo:
Two-dimensional flood inundation modelling is a widely used tool to aid flood risk management. In urban areas, the model spatial resolution required to represent flows through a typical street network often results in an impractical computational cost at the city scale. This paper presents the calibration and evaluation of a recently developed formulation of the LISFLOOD-FP model, which is more computationally efficient at these resolutions. Aerial photography was available for model evaluation on 3 days from the 24 to the 31 of July. The new formulation was benchmarked against the original version of the model at 20 and 40 m resolutions, demonstrating equally accurate simulation, given the evaluation data but at a 67 times faster computation time. The July event was then simulated at the 2 m resolution of the available airborne LiDAR DEM. This resulted in more accurate simulation of the floodplain drying dynamics compared with the coarse resolution models, although maximum inundation levels were simulated equally well at all resolutions tested.
Resumo:
OPAL is an English national programme that takes scientists into the community to investigate environmental issues. Biological monitoring plays a pivotal role covering topics of: i) soil and earthworms; ii) air, lichens and tar spot on sycamore; iii) water and aquatic invertebrates; iv) biodiversity and hedgerows; v) climate, clouds and thermal comfort. Each survey has been developed by an interdisciplinary team and tested by voluntary, statutory and community sectors. Data are submitted via the web and instantly mapped. Preliminary results are presented, together with a discussion on data quality and uncertainty. Communities also investigate local pollution issues, ranging from nitrogen deposition on heathlands to traffic emissions on roadside vegetation. Over 200,000 people have participated so far, including over 1000 schools and 1000 voluntary groups. Benefits include a substantial, growing database on biodiversity and habitat condition, much from previously unsampled sites particularly in urban areas, and a more engaged public.
Resumo:
The effect of episodic drought on dissolved organic carbon (DOC) dynamics in peatlands has been the subject of considerable debate, as decomposition and DOC production is thought to increase under aerobic conditions, yet decreased DOC concentrations have been observed during drought periods. Decreased DOC solubility due to drought-induced acidification driven by sulphur (S) redox reactions has been proposed as a causal mechanism; however evidence is based on a limited number of studies carried out at a few sites. To test this hypothesis on a range of different peats, we carried out controlled drought simulation experiments on peat cores collected from six sites across Great Britain. Our data show a concurrent increase in sulphate (SO4) and a decrease in DOC across all sites during simulated water table draw-down, although the magnitude of the relationship between SO4 and DOC differed between sites. Instead, we found a consistent relationship across all sites between DOC decrease and acidification measured by the pore water acid neutralising capacity (ANC). ANC provided a more consistent measure of drought-induced acidification than SO4 alone because it accounts for differences in base cation and acid anions concentrations between sites. Rewetting resulted in rapid DOC increases without a concurrent increase in soil respiration, suggesting DOC changes were primarily controlled by soil acidity not soil biota. These results highlight the need for an integrated analysis of hydrologically driven chemical and biological processes in peatlands to improve our understanding and ability to predict the interaction between atmospheric pollution and changing climatic conditions from plot to regional and global scales.
Resumo:
In this contribution we aim at anchoring Agent-Based Modeling (ABM) simulations in actual models of human psychology. More specifically, we apply unidirectional ABM to social psychological models using low level agents (i.e., intra-individual) to examine whether they generate better predictions, in comparison to standard statistical approaches, concerning the intentions of performing a behavior and the behavior. Moreover, this contribution tests to what extent the predictive validity of models of attitude such as the Theory of Planned Behavior (TPB) or Model of Goal-directed Behavior (MGB) depends on the assumption that peoples’ decisions and actions are purely rational. Simulations were therefore run by considering different deviations from rationality of the agents with a trembling hand method. Two data sets concerning respectively the consumption of soft drinks and physical activity were used. Three key findings emerged from the simulations. First, compared to standard statistical approach the agent-based simulation generally improves the prediction of behavior from intention. Second, the improvement in prediction is inversely proportional to the complexity of the underlying theoretical model. Finally, the introduction of varying degrees of deviation from rationality in agents’ behavior can lead to an improvement in the goodness of fit of the simulations. By demonstrating the potential of ABM as a complementary perspective to evaluating social psychological models, this contribution underlines the necessity of better defining agents in terms of psychological processes before examining higher levels such as the interactions between individuals.
Resumo:
MD simulation studies showing the influence of porosity and carbon surface oxidation on phenol adsorption from aqueous solutions on carbons are reported. Based on a realistic model of activated carbon, three carbon structures with gradually changed microporosity were created. Next, a different number of surface oxygen groups was introduced. The pores with diameters around 0.6 nm are optimal for phenol adsorption and after the introduction of surface oxygen functionalities, adsorption of phenol decreases (in accordance with experimental data) for all studied models. This decrease is caused by a pore blocking effect due to the saturation of surface oxygen groups by highly hydrogen-bounded water molecules.
Resumo:
Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.