269 resultados para competitiveness study, real estate developer, competitive indicators, questionnaire
Resumo:
In this paper we investigate the commonly used autoregressive filter method of adjusting appraisal-based real estate returns to correct for the perceived biases induced in the appraisal process. Since the early work by Geltner (1989), many papers have been written on this topic but remarkably few have considered the relationship between smoothing at the individual property level and the amount of persistence in the aggregate appraised-based index. To investigate this issue in more detail we analyse a sample of individual property level appraisal data from the Investment Property Database (IPD). We find that commonly used unsmoothing estimates overstate the extent of smoothing that takes place at the individual property level. There is also strong support for an ARFIMA representation of appraisal returns.
Resumo:
Volatility, or the variability of the underlying asset, is one of the key fundamental components of property derivative pricing and in the application of real option models in development analysis. There has been relatively little work on volatility in real terms of its application to property derivatives and the real options analysis. Most research on volatility stems from investment performance (Nathakumaran & Newell (1995), Brown & Matysiak 2000, Booth & Matysiak 2001). Historic standard deviation is often used as a proxy for volatility and there has been a reliance on indices, which are subject to valuation smoothing effects. Transaction prices are considered to be more volatile than the traditional standard deviations of appraisal based indices. This could lead, arguably, to inefficiencies and mis-pricing, particularly if it is also accepted that changes evolve randomly over time and where future volatility and not an ex-post measure is the key (Sing 1998). If history does not repeat, or provides an unreliable measure, then estimating model based (implied) volatility is an alternative approach (Patel & Sing 2000). This paper is the first of two that employ alternative approaches to calculating and capturing volatility in UK real estate for the purposes of applying the measure to derivative pricing and real option models. It draws on a uniquely constructed IPD/Gerald Eve transactions database, containing over 21,000 properties over the period 1983-2005. In this first paper the magnitude of historic amplification associated with asset returns by sector and geographic spread is looked at. In the subsequent paper the focus will be upon model based (implied) volatility.
Resumo:
This paper, examines whether the asset holdings and weights of an international real estate portfolio using exchange rate adjusted returns are essentially the same or radically different from those based on unadjusted returns. The results indicate that the portfolio compositions produced by exchange rate adjusted returns are markedly different from those based on unadjusted returns. However following the introduction of the single currency the differences in portfolio composition are much less pronounced. The findings have a practical consequence for the investor because they suggest that following the introduction of the single currency international investors can concentrate on the real estate fundamentals when making their portfolio choices, rather than worry about the implications of exchange rate risk.
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD UK database over the period 1981 to 2003 than normally distributed risk models. This finding mirrors results in the US and Australia using identical methodology. Real estate investment risk is heteroskedastic, but the characteristic exponent of the investment risk function is constant across time – yet it may vary by property type. Asset diversification is far less effective at reducing the impact of non‐systematic investment risk on real estate portfolios than in the case of assets with normally distributed investment risk. The results, therefore, indicate that multi‐risk factor portfolio allocation models based on measures of investment codependence from finite‐variance statistics are ineffective in the real estate context
Resumo:
The reduction of portfolio risk is important to all investors but is particularly important to real estate investors as most property portfolios are generally small. As a consequence, portfolios are vulnerable to a significant risk of under-performing the market, or a target rate of return and so investors may be exposing themselves to greater risk than necessary. Given the potentially higher risk of underperformance from owning only a few properties, we follow the approach of Vassal (2001) and examine the benefits of holding more properties in a real estate portfolio. Using Monte Carlo simulation and the returns from 1,728 properties in the IPD database, held over the 10-year period from 1995 to 2004, the results show that increases in portfolio size offers the possibility of a more stable and less volatile return pattern over time, i.e. down-side risk is diminished with increasing portfolio size. Nonetheless, increasing portfolio size has the disadvantage of restricting the probability of out-performing the benchmark index by a significant amount. In other words, although increasing portfolio size reduces the down-side risk in a portfolio, it also decreases its up-side potential. Be that as it may, the results provide further evidence that portfolios with large numbers of properties are always preferable to portfolios of a smaller size.