124 resultados para change management
Resumo:
The use of business management techniques in the public sector is not a new topic. However the increased use of the phrase "housing business management" as against that of "housing administration" reflects a change in the underlying philosophy of service delivery. The paper examines how data collection and use can be related to the operational requirements of the social landlords and highlights the problems of systems dynamics generating functionally obsolete data.
Resumo:
The impending decline of the tenanted sector in British agriculture has been forecast for many years. Much debate has surrounded the issues and ensuing legislation has repeatedly attempted to stave-off what some view as the inevitable demise of tenant farmers. Following a flurry of activity after the Northfield Report of 1979 and culminating in the Agricultural Holdings Acts of 1984 and 1986, the debate has recently been fuelled by a strongly pro-market lobby. With the public support of successive Ministers of Agriculture, this lobby has advocated a rejection of the former state intervention in the landlord/tenant relationship in favour of freedom of contract, an option that now appears increasingly likely to reach the statute books. This paper reviews the significant elements of the debate, attempting to explain the principal reasons for the failure of earlier legislation and the primary shortcomings of the current emphasis of consultation. The paper concludes that while there are some significant legislative disincentives to letting land, the freeing-up of contracts in isolation from other, non-contractual issues, will not result in the increase in lettings purportedly desired by the Ministers and their acolytes.
Resumo:
The vulnerability of smallholder farmers to climate change and variability is increasingly rising. As agriculture is the only source of income for most of them, agricultural adaptation with respect to climate change is vital for their sustenance and to ensure food security. In order to develop appropriate strategies and institutional responses, it is necessary to have a clear understanding of the farmers’ perception of climate change, actual adaptations at farm-level and what factors drive and constrain their decision to adapt. Thus, this study investigates the farm-level adaptation to climate change based on the case of a farming community in Sri Lanka. The findings revealed that farmers’ perceived the ongoing climate change based on their experiences. Majority of them adopted measures to address climate change and variability. These adaptation measures can be categorised into five groups, such as crop management, land management, irrigation management, income diversification, and rituals. The results showed that management of non-climatic factors was an important strategy to enhance farmers’ adaptation, particularly in a resource-constrained smallholder farming context. The results of regression analysis indicated that human cognition was an important determinant of climate change adaptation. Social networks were also found to significantly influence adaptation. The study also revealed that social barriers, such as cognitive and normative factors, are equally important as other economic barriers to adaptation. While formulating and implementing the adaptation strategies, this study underscored the importance of understanding socio-economic, cognitive and normative aspects of the local communities.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
This article examines the role of communities in carbon management as it relates to both climate change and energy policy at the local level and as a seedbed for grassroots activity. The article considers some of the implications of recent policy developments, particularly the ways in which the ‘lines of responsibility’ are now being drawn at the local level. Drawing upon in-depth interviews with local authorities in the UK and the USA, the article examines the political distinctions that are evident between the two situations and the ramifications of these for practical community engagement in carbon management at the local level. Community engagement is likely to be central to the delivery of CO2 reductions, but evidence so far points to a series of challenges that will require a greater emphasis on partnership working between community groups and formal decision-making bodies.
Resumo:
1. Nutrient concentrations (particularly N and P) determine the extent to which water bodies are or may become eutrophic. Direct determination of nutrient content on a wide scale is labour intensive but the main sources of N and P are well known. This paper describes and tests an export coefficient model for prediction of total N and total P from: (i) land use, stock headage and human population; (ii) the export rates of N and P from these sources; and (iii) the river discharge. Such a model might be used to forecast the effects of changes in land use in the future and to hindcast past water quality to establish comparative or baseline states for the monitoring of change. 2. The model has been calibrated against observed data for 1988 and validated against sets of observed data for a sequence of earlier years in ten British catchments varying from uplands through rolling, fertile lowlands to the flat topography of East Anglia. 3. The model predicted total N and total P concentrations with high precision (95% of the variance in observed data explained). It has been used in two forms: the first on a specific catchment basis; the second for a larger natural region which contains the catchment with the assumption that all catchments within that region will be similar. Both models gave similar results with little loss of precision in the latter case. This implies that it will be possible to describe the overall pattern of nutrient export in the UK with only a fraction of the effort needed to carry out the calculations for each individual water body. 4. Comparison between land use, stock headage, population numbers and nutrient export for the ten catchments in the pre-war year of 1931, and for 1970 and 1988 show that there has been a substantial loss of rough grazing to fertilized temporary and permanent grasslands, an increase in the hectarage devoted to arable, consistent increases in the stocking of cattle and sheep and a marked movement of humans to these rural catchments. 5. All of these trends have increased the flows of nutrients with more than a doubling of both total N and total P loads during the period. On average in these rural catchments, stock wastes have been the greatest contributors to both N and P exports, with cultivation the next most important source of N and people of P. Ratios of N to P were high in 1931 and remain little changed so that, in these catchments, phosphorus continues to be the nutrient most likely to control algal crops in standing waters supplied by the rivers studied.
Resumo:
Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological path-ways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.
Resumo:
Climate change challenges contemporary management practices and ways of organizing. While aspects of this challenge have been long recognized, many pertinent dimensions are less effectively articulated. Based on contemporary literature and insights from articles submitted to this special issue, the guest editors of this special issue highlight some of the challenges posed by climate change to government and business, and indicate the range of options and approaches being adopted to address these challenges.
Resumo:
Communities are increasingly empowered with the ability and responsibility of working with national governments to make decisions about marine resources in decentralized co-management arrangements. This transition toward decentralized management represents a changing governance landscape. This paper explores the transition to decentralisation in marine resource management systems in three East African countries. The paper draws upon expert opinion and literature from both political science and linked social-ecological systems fields to guide exploration of five key governance transition concepts in each country: (1) drivers of change; (2) institutional arrangments; (3 institutional fit; (4) actor interactions; and (5) adaptive management. Key findings are that decentralized management in the region was largely donor-driven and only partly tranferred power to local stakeholders. However, increased accountability created a degree of democracy in regards to natural resource governance that was not previously present. Additionally, increased local-level adaptive management has emerged in most systems and, to date, this experimental management has helped to change resource user's views from metaphysical to more scientific cause-and-effect attribution of changes to resource conditions.
Resumo:
We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.
Resumo:
The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.
Resumo:
In Situ preservation is a core strategy for the conservation and management of waterlogged remains at wetland sites. Inorganic and organic remains can, however, quickly become degraded, or lost entirely, as a result of chemical or hydrological changes. Monitoring is therefore crucial in identifying baseline data for a site, the extent of spatial and or temporal variability, and in evaluating the potential impacts of these variables on current and future In Situ preservation potential. Since August 2009, monthly monitoring has taken place at the internationally important Iron Age site of Glastonbury Lake Village in the Somerset Levels, UK. A spatial, stratigraphic, and analytical approach to the analysis of sediment horizons and monitoring of groundwater chemistry, redox potential, water table depth and soil moisture (using TDR) was used to characterize the site. Significant spatial and temporal variability has been identified, with results from water-table monitoring and some initial chemical analysis from Glastonbury presented here. It appears that during dry periods parts of this site are at risk from desiccation. Analysis of the chemical data, in addition to integrating the results from the other parameters, is ongoing, with the aim of clarifying the risk to the entire site.
Resumo:
Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020–2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.
Resumo:
Purpose – This paper aims to explore the nature of the emerging discourse of private climate change reporting, which takes place in one-on-one meetings between institutional investors and their investee companies. Design/methodology/approach – Semi-structured interviews were conducted with representatives from 20 UK investment institutions to derive data which was then coded and analysed, in order to derive a picture of the emerging discourse of private climate change reporting, using an interpretive methodological approach, in addition to explorative analysis using NVivo software. Findings – The authors find that private climate change reporting is dominated by a discourse of risk and risk management. This emerging risk discourse derives from institutional investors' belief that climate change represents a material risk, that it is the most salient sustainability issue, and that their clients require them to manage climate change-related risk within their portfolio investment. It is found that institutional investors are using the private reporting process to compensate for the acknowledged inadequacies of public climate change reporting. Contrary to evidence indicating corporate capture of public sustainability reporting, these findings suggest that the emerging private climate change reporting discourse is being captured by the institutional investment community. There is also evidence of an emerging discourse of opportunity in private climate change reporting as the institutional investors are increasingly aware of a range of ways in which climate change presents material opportunities for their investee companies to exploit. Lastly, the authors find an absence of any ethical discourse, such that private climate change reporting reinforces rather than challenges the “business case” status quo. Originality/value – Although there is a wealth of sustainability reporting research, there is no academic research on private climate change reporting. This paper attempts to fill this gap by providing rich interview evidence regarding the nature of the emerging private climate change reporting discourse.
Resumo:
Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere – increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.