101 resultados para anionic exchange
Resumo:
This chapter applies rigorous statistical analysis to existing datasets of medieval exchange rates quoted in merchants’ letters sent from Barcelona, Bruges and Venice between 1380 and 1310, which survive in the archive of Francesco di Marco Datini of Prato. First, it tests the exchange rates for stationarity. Second, it uses regression analysis to examine the seasonality of exchange rates at the three financial centres and compares them against contemporary descriptions by the merchant Giovanni di Antonio da Uzzano. Third, it tests for structural breaks in the exchange rate series.
Resumo:
This paper proposes two new tests for linear and nonlinear lead/lag relationships between time series based on the concepts of cross-correlations and cross-bicorrelations, respectively. The tests are then applied to a set of Sterling-denominated exchange rates. Our analysis indicates that there existed periods during the post-Bretton Woods era where the temporal relationship between different exchange rates was strong, although these periods have become less frequent over the past 20 years. In particular, our results demonstrate the episodic nature of the nonlinearity, and have implications for the speed of flow of information between financial series. The method generalises recently proposed tests for nonlinearity to the multivariate context.
Resumo:
This paper combines and generalizes a number of recent time series models of daily exchange rate series by using a SETAR model which also allows the variance equation of a GARCH specification for the error terms to be drawn from more than one regime. An application of the model to the French Franc/Deutschmark exchange rate demonstrates that out-of-sample forecasts for the exchange rate volatility are also improved when the restriction that the data it is drawn from a single regime is removed. This result highlights the importance of considering both types of regime shift (i.e. thresholds in variance as well as in mean) when analysing financial time series.
Resumo:
This paper proposes and implements a new methodology for forecasting time series, based on bicorrelations and cross-bicorrelations. It is shown that the forecasting technique arises as a natural extension of, and as a complement to, existing univariate and multivariate non-linearity tests. The formulations are essentially modified autoregressive or vector autoregressive models respectively, which can be estimated using ordinary least squares. The techniques are applied to a set of high-frequency exchange rate returns, and their out-of-sample forecasting performance is compared to that of other time series models
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.
Resumo:
We examine a method recently proposed by Hinich and Patterson (mimeo, University of Texas at Austin, 1995) for testing the validity of specifying a GARCH error structure for financial time series data in the context of a set of ten daily Sterling exchange rates. The results demonstrate that there are statistical structures present in the data that cannot be captured by a GARCH model, or any of its variants. This result has important implications for the interpretation of the recent voluminous literature which attempts to model financial asset returns using this family of models.
Resumo:
This paper tests directly for deterministic chaos in a set of ten daily Sterling-denominated exchange rates by calculating the largest Lyapunov exponent. Although in an earlier paper, strong evidence of nonlinearity has been shown, chaotic tendencies are noticeably absent from all series considered using this state-of-the-art technique. Doubt is cast on many recent papers which claim to have tested for the presence of chaos in economic data sets, based on what are argued here to be inappropriate techniques.
Resumo:
This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.
Resumo:
A number of tests for non-linear dependence in time series are presented and implemented on a set of 10 daily sterling exchange rates covering the entire post Bretton-Woods era until the present day. Irrefutable evidence of non-linearity is shown in many of the series, but most of this dependence can apparently be explained by reference to the GARCH family of models. It is suggested that the literature in this area has reached an impasse, with the presence of ARCH effects clearly demonstrated in a large number of papers, but with the tests for non-linearity which are currently available being unable to classify any additional non-linear structure.
Resumo:
An alternative procedure to that of Lo is proposed for assessing whether there is significant evidence of persistence in time series. The technique estimates the Hurst exponent itself, and significance testing is based on an application of bootstrapping using surrogate data. The method is applied to a set of 10 daily pound exchange rates. A general lack of long-term memory is found to characterize all the series tested, in sympathy with the findings of a number of other recent papers which have used Lo's techniques.
Resumo:
The aim of this study is to assess the characteristics of the hot and cold IPO markets on the Stock Exchange of Mauritius (SEM). The results show that the hot issues exhibit, on average, a greater degree of underpricing than the cold issues, although the hot issue phenomenon is not a significant driving force in explaining this short-run underpricing. The results are consistent with the predictions of the changing risk composition hypothesis in suggesting that firms going public during hot markets are on average relatively more risky. The findings also support the time adverse selection hypothesis in that the firms’ quality dispersion is statistically different between hot and cold markets. Finally, the study concludes that firms which go public during hot markets do not underperform those going public in cold markets over the longer term.
Resumo:
Though anthropogenic impacts on boundary layer climates are expected to be large in dense urban areas, to date very few studies of energy flux observations are available. We report on 3.5 years of measurements gathered in central London, UK. Radiometer and eddy covariance observations at two adjacent sites, at different heights, were analysed at various temporal scales and with respect to meteorological conditions, such as cloud cover. Although the evaporative flux is generally small due to low moisture availability and a predominately impervious surface, the enhancement following rainfall usually lasts for 12–18 h. As both the latent and sensible heat fluxes are larger in the afternoon, they maintain a relatively consistent Bowen ratio throughout the middle of the day. Strong storage and anthropogenic heat fluxes sustain high and persistently positive sensible heat fluxes. At the monthly time scale, the urban surface often loses more energy by this turbulent heat flux than is gained from net all-wave radiation. Auxiliary anthropogenic heat flux information suggest human activities in the study area are sufficient to provide this energy.
Energy exchange in a dense urban environment Part II: impact of spatial heterogeneity of the surface
Resumo:
The centre of cities, characterised by spatial and temporal complexity, are challenging environments for micrometeorological research. This paper considers the impact of sensor location and heterogeneity of the urban surface on flux observations in the dense city centre of London, UK. Data gathered at two sites in close vicinity, but with different measurement heights, were analysed to investigate the influence of source area characteristics on long-term radiation and turbulent heat fluxes. Combining consideration of diffuse radiation and effects of specular reflections, the non-Lambertian urban surface is found to impact the measurements of surface albedo. Comparisons of observations from the two sites reveal that turbulent heat fluxes are similar under some flow conditions. However, they mostly observe processes at different scales due to their differing measurement heights, highlighting the critical impact of siting sensors in urban areas. A detailed source area analysis is presented to investigate the surface controls influencing the energy exchanges at the different scales
Resumo:
Hydrophilic interaction chromatography–mass spectrometry (HILIC–MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial–host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared to a control group. Urine samples were collected at day zero, four and eight, and analyzed by HILIC–MS. Multivariate data analysis was applied to the urinary metabolic profiles to identify biochemical variation between the treatment groups. Principal component analysis found a clear distinction between those animals receiving antibiotics and the control animals, with twenty-nine discriminatory compounds of which twenty were down-regulated and nine up-regulated upon treatment. In the treatment group receiving antibiotics for four days, a recovery effect was observed for seven compounds after cessation of antibiotic administration. Thirteen discriminatory compounds could be putatively identified based on their accurate mass, including aconitic acid, benzenediol sulfate, ferulic acid sulfate, hippuric acid, indoxyl sulfate, penicillin G, phenol and vanillin 4-sulfate. The rat urine samples had previously been analyzed by capillary electrophoresis (CE) with MS detection and proton nuclear magnetic resonance (1H NMR) spectroscopy. Using CE–MS and 1H NMR spectroscopy seventeen and twenty-five discriminatory compounds were found, respectively. Both hippuric acid and indoxyl sulfate were detected across all three platforms. Additionally, eight compounds were observed with both HILIC–MS and CE–MS. Overall, HILIC–MS appears to be highly complementary to CE–MS and 1H NMR spectroscopy, identifying additional compounds that discriminate the urine samples from antibiotic-treated and control rats.