87 resultados para ab initio


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three new phenylmercury(II) and one mercury(II) dithiocarbamate complexes viz. PhHg S2CN(PyCH2) Bz (1), PhHg S2CN(PyCH2)CH3 (2), PhHg S2CN(Bz)CH3 (3), and [Hg (NCS2(PyCH2)Bz)(2)] (4) (Py = pyridine; Bz = benzyl) have been synthesized and characterized by elemental analyses, IR, electronic absorption, H-1 and C-13 NMR spectroscopy. The crystal structures of 1, 2 and 3 showed a linear S-Hg-C core at the centre of the molecule, in which the metal atom is bound to the sulfur atom of the dithiocarbamate ligand and a carbon atom of the aromatic ring. In contrast the crystal structure of 4 showed a linear S-Hg-S core at the Hg(II) centre of the molecule. Weak intermolecular Hg center dot center dot center dot N (Py) interactions link molecules into a linear chain in the case of 1, whereas chains of dimers are formed in 2 through intermolecular Hg center dot center dot center dot N (Py) and Hg center dot center dot center dot S interactions. 3 forms a conventional face-to-edge dimeric structure through intermolecular Hg center dot center dot center dot S secondary bonding and 4 forms a linear chain of dimers through face-to-face Hg center dot center dot center dot S secondary bonding. In order to elucidate the nature of these secondary bonding interactions and the electronic absorption spectra of the complexes, ab initio quantum chemical calculations at the MP2 level and density functional theory calculations were carried out for 1-3. Complexes 1 and 2 exhibited photoluminescent properties in the solid state as well as in the solution phase. Studies indicate that Hg center dot center dot center dot S interactions decrease and Hg center dot center dot center dot N interactions increase the chances of photoluminescence in the solid phase

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the mid-1970s it was recognized that, as well as being substances that deplete stratospheric ozone, chlorofluorocarbons (CFCs) were strong greenhouse gases that could have substantial impacts on radiative forcing of climate change. Around a decade later, this group of radiatively active compounds was expanded to include a large number of replacements for ozone-depleting substances such as chlorocarbons, hydrochlorocarbons, hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), bromofluorocarbons, and bromochlorofluorocarbons. This paper systematically reviews the published literature concerning the radiative efficiencies (REs) of CFCs, bromofluorocarbons and bromochlorofluorocarbons (halons), HCFCs, HFCs, PFCs, SF6, NF3, and related halogen containing compounds. In addition we provide a comprehensive and self-consistent set of new calculations of REs and global warming potentials (GWPs) for these compounds, mostly employing atmospheric lifetimes taken from the available literature. We also present Global Temperature change Potentials (GTPs) for selected gases. Infrared absorption spectra used in the RE calculations were taken from databases and individual studies, and from experimental and ab initio computational studies. Evaluations of REs and GWPs are presented for more than 200 compounds. Our calculations yield REs significantly (> 5%) different from those in the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) for 49 compounds. We present new RE values for more than 100 gases which were not included in AR4. A widely-used simple method to calculate REs and GWPs from absorption spectra and atmospheric lifetimes is assessed and updated. This is the most comprehensive review of the radiative efficiencies and global warming potentials of halogenated compounds performed to date.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modelled using RRKM theory, based on Eo values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k∞ values in the range 1.9 to 4.5 × 10-10 cm3 molecule-1 s-1. These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16 and 67% of the collision rates for these reactions. In the reaction of SiH2 + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalysed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H2O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by 193 nm laser flash photolysis of silacyclopent-3-ene, have been carried out in the presence of ammonia, NH3. Second order kinetics were observed. The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas at each of the three temperatures, 299, 340 and 400 K. The second order rate constants (laser pulse energy of 60 mJ/pulse) fitted the Arrhenius equation: log(k/cm3 molecule-1 s-1) = (-10.37 ± 0.17) + (0.36 ± 1.12 kJ mol-1)/RTln10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range 10-100 Torr, but showed small decreases in value at 3 and 1 Torr. There was also a weak intensity dependence, with rate constants decreasing at laser pulse energies of 30 mJ/pulse. Ab initio calculations at the G3 level of theory, show that SiH2 + NH3 should form an initial adduct (donor-acceptor complex), but that energy barriers are too great for further reaction of the adduct. This implies that SiH2 + NH3 should be a pressure dependent association reaction. The experimental data are inconsistent with this and we conclude that SiH2 decays are better explained by reaction of SiH2 with the amino radical, NH2, formed by photodissociation of NH3 at 193 nm. The mechanism of this previously unstudied reaction is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on theoretical arguments we propose a possible route for controlling the band-gap in the promising photovoltaic material CdIn2S4. Our ab initio calculations show that the experimental degree of inversion in this spinel (fraction of tetrahedral sites occupied by In) corresponds approximately to the equilibrium value given by the minimum of the theoretical inversion free energy at a typical synthesis temperature. Modification of this temperature, or of the cooling rate after synthesis, is then expected to change the inversion degree, which in turn sensitively tunes the electronic band-gap of the solid, as shown here by Heyd-Scuseria-Ernzerhof screened hybrid functional calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use a combination of ab initio calculations and statistical mechanics to investigate the substitution of Li+ for Mg2+ in magnesium hydride (MgH2) accompanied by the formation of hydrogen vacancies with positive charge (with respect to the original ion at the site). We show that the binding energy between dopants and vacancy defects leads to a significant fraction of trapped vacancies and therefore a dramatic reduction in the number of free vacancies available for diffusion. The concentration of free vacancies initially increases with dopant concentration but reaches a maximum at around 1 mol % Li doping and slowly decreases with further doping. At the optimal level of doping, the corresponding concentration of free vacancies is much higher than the equilibrium concentrations of charged and neutral vacancies in pure MgH2 at typical hydrogen storage conditions. We also show that Li-doped MgH2 is thermodynamically metastable with respect to phase separation into pure magnesium and lithium hydrides at any significant Li concentration, even after considering the stabilization provided by dopant-vacancy interactions and configurational entropic effects. Our results suggest that lithium doping may enhance hydrogen diffusion hydride but only to a limited extent determined by an optimal dopant concentration and conditioned to the stability of the doped phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this EUDO CITIZENSHIP Forum Debate, several authors consider the interrelations between eligibility criteria for participation in independence referendum (that may result in the creation of a new independent state) and the determination of putative citizenship ab initio (on day one) of such a state. The kick-off contribution argues for resemblance of an independence referendum franchise and of the initial determination of the citizenry, critically appraising the incongruence between the franchise for the 18 September 2014 Scottish independence referendum, and the blueprint for Scottish citizenship ab initio put forward by the Scottish Government in its 'Scotland's Future' White Paper. Contributors to this debate come from divergent disciplines (law, political science, sociology, philosophy). They reflect on and contest the above claims, both generally and in relation to regional settings including (in addition to Scotland) Catalonia/Spain, Flanders/Belgium, Quebec/Canada, Post-Yugoslavia and Puerto-Rico/USA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5, and 8 μm obtained with the Infrared Array Camera on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, Hubble Space Telescope, and ground-based V, I, H, and Ks published observations, the range 0.5-10 μm can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the data set. Representative climate models were calculated by using a three-dimensional, pseudospectral general circulation model with idealized thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio-calculated, line list for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water, and other molecules. No clear evidence of carbon monoxide and carbon dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesized to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The state-resolved reaction probability of CH4 on Pt�110-�1�2 was measured as a function of CH4 translational energy for four vibrational eigenstates comprising different amounts of C-H stretch and bend excitation. Mode-specific reactivity is observed both between states from different polyads and between isoenergetic states belonging to the same polyad of CH4. For the stretch/bend combination states, the vibrational efficacy of reaction activation is observed to be higher than for either pure C-H stretching or pure bending states, demonstrating a concerted role of stretch and bend excitation in C-H bond scission. This concerted role, reflected by the nonadditivity of the vibrational efficacies, is consistent with transition state structures found by ab initio calculations and indicates that current dynamical models of CH4 chemisorption neglect an important degree of freedom by including only C-H stretching motion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The motion of adsorbate molecules across surfaces is fundamental to self-assembly, material growth, and heterogeneous catalysis. Recent Scanning Tunneling Microscopy studies have demonstrated the electron-induced long-range surface-migration of ethylene, benzene, and related molecules, moving tens of Angstroms across Si(100). We present a model of the previously unexplained long-range recoil of chemisorbed ethylene across the surface of silicon. The molecular dynamics reveal two key elements for directed long-range migration: first ‘ballistic’ motion that causes the molecule to leave the ab initio slab of the surface traveling 3–8 Å above it out of range of its roughness, and thereafter skipping-stone ‘bounces’ that transport it further to the observed long distances. Using a previously tested Impulsive Two-State model, we predict comparable long-range recoil of atomic chlorine following electron-induced dissociation of chlorophenyl chemisorbed at Cu(110)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400–1840 cm−1 and 3440–3970 cm−1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm−1 band) and 7% for self-broadening coefficients (3600 cm−1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm−1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4–5% for both intensities and half-widths.