158 resultados para Variability of the pulse wave


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The longwave radiative cooling of the clear-sky atmosphere (Q(LWc)) is a crucial component of the global hydrological cycle and is composed of the clear-sky outgoing longwave radiation to space (OLRc) and the net downward minus upward clear-sky longwave radiation to the surface (SNLc). Estimates of QLWc from reanalyses and observations are presented for the period 1979-2004. Compared to other reanalyses data sets, the European Centre for Medium-range Weather Forecasts 40-year reanalysis (ERA40) produces the largest Q(LWc) over the tropical oceans (217 W m(-2)), explained by the least negative SNLc. On the basis of comparisons with data derived from satellite measurements, ERA40 provides the most realistic QLWc climatology over the tropical oceans but exhibits a spurious interannual variability for column integrated water vapor (CWV) and SNLc. Interannual monthly anomalies of QLWc are broadly consistent between data sets with large increases during the warm El Nino events. Since relative humidity ( RH) errors applying throughout the troposphere result in compensating effects on the cooling to space and to the surface, they exert only a marginal effect on QLWc. An observed increase in CWV with surface temperature of 3 kg m(-2) K-1 over the tropical oceans is important in explaining a positive relationship between QLWc and surface temperature, in particular over ascending regimes; over tropical ocean descending regions this relationship ranges from 3.6 to 4.6 +/- 0.4 W m(-2) K-1 for the data sets considered, consistent with idealized sensitivity tests in which tropospheric warming is applied and RH is held constant and implying an increase in precipitation with warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare European Centre for Medium-Range Weather Forecasts 15-year reanalysis (ERA-15) moisture over the tropical oceans with satellite observations and the U.S. National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research 40-year reanalysis. When systematic differences in moisture between the observational and reanalysis data sets are removed, the NCEP data show excellent agreement with the observations while the ERA-15 variability exhibits remarkable differences. By forcing agreement between ERA-15 column water vapor and the observations, where available, by scaling the entire moisture column accordingly, the height-dependent moisture variability remains unchanged for all but the 550–850 hPa layer, where the moisture variability reduces significantly. Thus the excess variation of column moisture in ERA-15 appears to originate in this layer. The moisture variability provided by ERA-15 is not deemed of sufficient quality for use in the validation of climate models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated diurnal nitrate (NO3-) concentration variability in the San Joaquin River using an in situ optical NO3- sensor and discrete sampling during a 5-day summer period characterized by high algal productivity. Dual NO3- isotopes (delta N-15(NO3) and delta O-18(NO3)) and dissolved oxygen isotopes (delta O-18(DO)) were measured over 2 days to assess NO3- sources and biogeochemical controls over diurnal time-scales. Concerted temporal patterns of dissolved oxygen (DO) concentrations and delta O-18(DO) were consistent with photosynthesis, respiration and atmospheric O-2 exchange, providing evidence of diurnal biological processes independent of river discharge. Surface water NO3- concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5-day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of delta N-15(NO3) and delta O-18(NO3) isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3- variability in the San Joaquin River during the study. The lack of a clear explanation for NO3- variability likely reflects a combination of riverine biological processes and time-varying physical transport of NO3- from upstream agricultural drains to the mainstem San Joaquin River. The application of an in situ optical NO3- sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments have been performed using a simplified, Newtonian forced, global circulation model to investigate how variability of the tropospheric jet can be characterized by examining the combined fluctuations of the two leading modes of annular variability. Eddy forcing of this variability is analyzed in the phase space of the leading modes using the vertically integrated momentum budget. The nature of the annular variability and eddy forcing depends on the time scale. At low frequencies the zonal flow and baroclinic eddies are in quasi equilibrium and anomalies propagate poleward. The eddies are shown primarily to reinforce the anomalous state and are closely balanced by the linear damping, leaving slow evolution as a residual. At high frequencies the flow is strongly evolving and anomalies are initiated on the poleward side of the tropospheric jet and propagate equatorward. The eddies are shown to drive this evolution strongly: eddy location and amplitude reflect the past baroclinicity, while eddy feedback on the zonal flow may be interpreted in terms of wave breaking associated with baroclinic life cycles in lateral shear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations from the High Resolution Dynamics Limb Sounder (HIRDLS) instrument on NASA's Aura satellite are used to quantify gravity wave momentum fluxes in the middle atmosphere. The period around the 2006 Arctic sudden stratospheric warming (SSW) is investigated, during which a substantial elevation of the stratopause occurred. Analysis of the HIRDLS results, together with analysis of European Centre for Medium-Range Weather Forecasting zonal winds, provide direct evidence of wind filtering of the gravity wave spectrum during this period. This confirms previous hypotheses from model studies and further contributes to our understanding of the effects of gravity wave driving on the winter polar stratopause.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most climate simulations used by the Intergovernmental Panel on Climate Change 2007 fourth assessment report, stratospheric processes are only poorly represented. For example, climatological or simple specifications of time-varying ozone concentrations are imposed and the quasi-biennial oscillation (QBO) of equatorial stratospheric zonal wind is absent. Here we investigate the impact of an improved stratospheric representation using two sets of perturbed simulations with the Hadley Centre coupled ocean atmosphere model HadGEM1 with natural and anthropogenic forcings for the 1979–2003 period. In the first set of simulations, the usual zonal mean ozone climatology with superimposed trends is replaced with a time series of observed zonal mean ozone distributions that includes interannual variability associated with the solar cycle, QBO and volcanic eruptions. In addition to this, the second set of perturbed simulations includes a scheme in which the stratospheric zonal wind in the tropics is relaxed to appropriate zonal mean values obtained from the ERA-40 re-analysis, thus forcing a QBO. Both of these changes are applied strictly to the stratosphere only. The improved ozone field results in an improved simulation of the stepwise temperature transitions observed in the lower stratosphere in the aftermath of the two major recent volcanic eruptions. The contribution of the solar cycle signal in the ozone field to this improved representation of the stepwise cooling is discussed. The improved ozone field and also the QBO result in an improved simulation of observed trends, both globally and at tropical latitudes. The Eulerian upwelling in the lower stratosphere in the equatorial region is enhanced by the improved ozone field and is affected by the QBO relaxation, yet neither induces a significant change in the upwelling trend.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the potential importance of scattering of long-wave radiation by clouds has been recognised, most studies have concentrated on the impact of high clouds and few estimates of the global impact of scattering have been presented. This study shows that scattering in low clouds has a significant impact on outgoing long-wave radiation (OLR) in regions of marine stratocumulus (-3.5 W m(-2) for overcast conditions) where the column water vapour is relatively low. This corresponds to an enhancement of the greenhouse effect of such clouds by 10%. The near-global impact of scattering on OLR is estimated to be -3.0 W m(-2), with low clouds contributing -0.9 W m(-2), mid-level cloud -0.7 W m(-2) and high clouds -1.4 W m(-2). Although this effect appears small compared to the global mean OLR of 240 W m(-2), it indicates that neglect of scattering will lead to an error in cloud long-wave forcing of about 10% and an error in net cloud forcing of about 20%.

Relevância:

100.00% 100.00%

Publicador: