88 resultados para VIBRATIONAL INVESTIGATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optically stimulated luminescence (OSL) from quartz is known to be the sum of several components with different rates of charge loss, originating from different trap types. The OSL components are clearly distinguished using the linear modulation (LM OSL) technique. A variety of pre-treatment and measurement conditions have been used on sedimentary samples in conjunction with linearly modulated optical stimulation to study in detail the behaviour of the OSL components of quartz. Single aliquots of different quartz samples have been found to contain typically five or six common LM OSL components when stimulated at View the MathML source. The components have been parameterised in terms of thermal stability (i.e. E and s), photoionisation cross-section energy dependence and dose response. The results of studies concerning applications of component-resolved LM OSL measurements on quartz are also presented. These include the detection of partial bleaching in young samples, use of ‘stepped wavelength’ stimulation to observe OSL from single components and attempts to extend the age range of quartz OSL dating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pyridyl-functionalized diiron dithiolate complex, [μ-(4-pyCH2−NMI-S2)Fe2(CO)6] (3, py = pyridine(ligand), NMI = naphthalene monoimide) was synthesized and fully characterized. In the presence of zinc tetraphenylporphyrin (ZnTPP), a self-assembled 3·ZnTPP complex was readily formed in CH2Cl2 by the coordination of the pyridyl nitrogen to the porphyrin zinc center. Ultrafast photoinduced electron transfer from excited ZnTPP to complex 3 in the supramolecular assembly was observed in real time by monitoring the ν(CO) and ν(CO)NMI spectral changes with femtosecond time-resolved infrared (TRIR) spectroscopy. We have confirmed that photoinduced charge separation produced the monoreduced species by comparing the time-resolved IR spectra with the conventional IR spectra of 3•− generated by reversible electrochemical reduction. The lifetimes for the charge separation and charge recombination processes were found to be τCS = 40 ± 3 ps and τCR = 205 ± 14 ps, respectively. The charge recombination is much slower than that in an analogous covalent complex, demonstrating the potential of a supramolecular approach to extend the lifetime of the chargeseparated state in photocatalytic complexes. The observed vibrational frequency shifts provide a very sensitive probe of the delocalization of the electron-spin density over the different parts of the Fe2S2 complex. The TR and spectro-electrochemical IR spectra, electron paramagnetic resonance spectra, and density functional theory calculations all show that the spin density in 3•− is delocalized over the diiron core and the NMI bridge. This delocalization explains why the complex exhibits low catalytic dihydrogen production even though it features a very efficient photoinduced electron transfer. The ultrafast porphyrin-to-NMIS2−Fe2(CO)6 photoinduced electron transfer is the first reported example of a supramolecular Fe2S2-hydrogenase model studied by femtosecond TRIR spectroscopy. Our results show that TRIR spectroscopy is a powerful tool to investigate photoinduced electron transfer in potential dihydrogen-producing catalytic complexes, and that way to optimize their performance by rational approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase studies have been performed for quaternary systems composed of egg lecithin, cosurfactant, water and oil. The lecithin used was the commercially available egg lecithin Ovothin 200 (which comprises ≥ 92% phosphatidylcholine). The cosurfactants employed were propanol and butanol, and these were used at lecithin/cosurfactant mixing ratios (Km) of 1:1 and 1.94:1 (weight basis). Six polar oils were investigated, including the alkanoic acids, octanoic and oleic, their corresponding ethyl esters and the medium and long chain triglycerides, Miglyol 812 and soybean oil. All oils, irrespective of the alcohol and the Km used, gave rise to systems that produced a stable isotropic region along the surfactant/oil axis (designated as a reverse microemulsion system). In addition, the systems incorporating propanol at both Km and butanol at a Km of 1.94: 1, generally gave rise to a liquid crystalline region and, in some cases, a second isotropic non-birefingent area (designated as a normal microemulsion system). The phase behaviour observed was largely dependent upon the alcohol and Km used and the size and the polarity of the oil present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method to detect the vibrational circular dichroism (VCD) of a localized part of a chiral molecular system is reported. A local VCD amplifier was implemented, and the distance dependence of the amplification was investigated in a series of peptides. The results indicate a characteristic distance of 2.0±0.3 bonds, which suggests that the amplification is a localized phenomenon. The amplifier can be covalently coupled to a specific part of a molecule, and can be switched ON and OFF electrochemically. By subtracting the VCD spectra obtained when the amplifier is in the ON and OFF states, the VCD of the local environment of the amplifier can be separated from the total VCD spectrum. Switchable local VCD amplification thus makes it possible to “zoom in” on a specific part of a chiral molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feeding damage to plants by insect herbivores induces the production of plant volatiles, which are attractive to the herbivores natural enemies. Little is understood about the plant biochemical pathways involved in aphid-induced plant volatile production. The aphid parasitoid Diaeretiella rapae can detect and respond to aphid-induced volatiles produced by Arabidopsis thaliana. When given experience of those volatiles, it can learn those cues and can therefore be used as a novel biosensor to detect them. The pathways involved in aphid-induced volatile production were investigated by comparing the responses of D. rapae to volatiles from a number of different transgenic mutants of A. thaliana, mutated in their octadecanoid, ethylene or salicylic acid wound-response pathways and also from wild-type plants. Plants were either undamaged or infested by the peach-potato aphid, Myzus persicae. It is demonstrated that the octadecanoid pathway and specifically the COI1 gene are required for aphid-induced volatile production. The presence of salicylic acid is also involved in volatile production. Using this model system, in combination with A. thaliana plants with single point gene mutations, has potential for the precise dissection of biochemical pathways involved in the production of aphid-induced volatiles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticipation is an emerging concept that can provide a bridge between the deepest philosophical theories about the nature of life and cognition on one hand and the empirical biological sciences steeped in reductionist and Newtonian conception of causality. Three conceptions of anticipation have been emerging from the literature that may be operationalised in a way leading to a viable empirical programme. The discussion of the research into a novel dynamical concept of anticipating synchronisation lends credence to such a possibility and suggests further links between the three anticipation paradigms. A careful progress mindful to the deep philosophical concerns but also respecting empirical evidence will ultimately lead towards unifying theoretical and empirical biological sciences and may offer progress where reductionist science have been so far faltering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical methods of geophysical survey are known to produce results that are hard to predict at different times of the year, and under differing weather conditions. This is a problem which can lead to misinterpretation of archaeological features under investigation. The dynamic relationship between a ‘natural’ soil matrix and an archaeological feature is a complex one, which greatly affects the success of the feature’s detection when using active electrical methods of geophysical survey. This study has monitored the gradual variation of measured resistivity over a selection of study areas. By targeting difficult to find, and often ‘missing’ electrical anomalies of known archaeological features, this study has increased the understanding of both the detection and interpretation capabilities of such geophysical surveys. A 16 month time-lapse study over 4 archaeological features has taken place to investigate the aforementioned detection problem across different soils and environments. In addition to the commonly used Twin-Probe earth resistance survey, electrical resistivity imaging (ERI) and quadrature electro-magnetic induction (EMI) were also utilised to explore the problem. Statistical analyses have provided a novel interpretation, which has yielded new insights into how the detection of archaeological features is influenced by the relationship between the target feature and the surrounding ‘natural’ soils. The study has highlighted both the complexity and previous misconceptions around the predictability of the electrical methods. The analysis has confirmed that each site provides an individual and nuanced situation, the variation clearly relating to the composition of the soils (particularly pore size) and the local weather history. The wide range of reasons behind survey success at each specific study site has been revealed. The outcomes have shown that a simplistic model of seasonality is not universally applicable to the electrical detection of archaeological features. This has led to the development of a method for quantifying survey success, enabling a deeper understanding of the unique way in which each site is affected by the interaction of local environmental and geological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we assess the abilities of a new electromagnetic (EM) system, the CMD Mini-Explorer, for prospecting of archaeological features in Ireland and the UK. The Mini-Explorer is an EM probe which is primarily aimed at the environmental/geological prospecting market for the detection of pipes and geology. It has long been evident from the use of other EM devices that such an instrument might be suitable for shallow soil studies and applicable for archaeological prospecting. Of particular interest for the archaeological surveyor is the fact that the Mini-Explorer simultaneously obtains both quadrature (‘conductivity’) and in-phase (relative to ‘magnetic susceptibility’) data from three depth levels. As the maximum depth range is probably about 1.5 m, a comprehensive analysis of the subsoil within that range is possible. As with all EM devices the measurements require no contact with the ground, thereby negating the problem of high contact resistance that often besets earth resistance data during dry spells. The use of the CMD Mini-Explorer at a number of sites has demonstrated that it has the potential to detect a range of archaeological features and produces high-quality data that are comparable in quality to those obtained from standard earth resistance and magnetometer techniques. In theory the ability to measure two phenomena at three depths suggests that this type of instrument could reduce the number of poor outcomes that are the result of single measurement surveys. The high success rate reported here in the identification of buried archaeology using a multi-depth device that responds to the two most commonly mapped geophysical phenomena has implications for evaluation style surveys. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This volume reports on the results of the Glastonbury Abbey Archaeological Archive Project, a collaboration between the University of Reading and the Trustees of Glastonbury Abbey, funded principally by the Arts and Humanities Research Council. The project has reassessed and reinterpreted all known archaeological records from the 1908–79 excavations and made the complete dataset available to the public through a digital archive hosted by the Archaeology Data Service (http://dx.doi.org/10.5284/1022585). The scope of the project has included the full analysis of the archaeological collections of Glastonbury Abbey by thirty-one leading specialists, including chemical and compositional analysis of glass and metal and petrological analysis of pottery and tile, and a comprehensive geophysical survey conducted by GSB Prospection Ltd. For the first time, it has been possible to achieve a framework of independent dating based on reassessment of the finds and radiocarbon dating of surviving organic material from the 1950s excavations. The principal aim of the Glastonbury Abbey Archaeological Project was to set aside previous assumptions based on the historical and legendary traditions and to provide a rigorous reassessment of the archive of antiquarian excavations. This research has revealed that some of the best known archaeological ‘facts’ about Glastonbury are themselves myths perpetuated by the abbey’s excavators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experimental observations of enhanced vibrational circular dichroism (VCD) in molecular systems with low-lying electronically excited states suggest interesting new applications of VCD spectroscopy. The theory describing VCD enhancement through vibronic coupling schemes was derived by Nafie in 1983, but only recently experimental evidence of VCD amplification has demonstrated the extent to which this effect can be exploited as a structure elucidation tool to probe local structure. In this Concept paper, we give an overview of the physics behind vibrational circular dichroism, in particular the equations governing the VCD amplification effect, and review the latest experimental developments with a prospective view on the application of amplified VCD to locally probe biomolecular structure.