92 resultados para Transgenic rice


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cereal grains are the dominant source of cadmium in the human diet, with rice being to the fore. Here we explore the effect of geographic, genetic, and processing (milling) factors on rice grain cadmium and rice consumption rates that lead to dietary variance in cadmium intake. From a survey of 12 countries on four continents, cadmium levels in rice grain were the highest in Bangladesh and Sri Lanka, with both these countries also having high per capita rice intakes. For Bangladesh and Sri Lanka, there was high weekly intake of cadmium from rice, leading to intakes deemed unsafe by international and national regulators. While genetic variance, and to a lesser extent milling, provide strategies for reducing cadmium in rice, caution has to be used, as there is environmental regulation as well as genetic regulation of cadmium accumulation within rice grains. For countries that import rice, grain cadmium can be controlled by where that rice is sourced, but for countries with subsistence rice economies that have high levels of cadmium in rice grain, agronomic and breeding strategies are required to lower grain cadmium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extensive data set of total arsenic analysis for 901 polished (white) grain samples, originating from 10 countries from 4 continents, was compiled. The samples represented the baseline (i.e., not specifically collected from arsenic contaminated areas), and all were for market sale in major conurbations. Median total arsenic contents of rice varied 7-fold, with Egypt (0.04 mg/kg) and India (0.07 mg/kg) having the lowest arsenic content while the U.S. (0.25 mg/kg) and France (0.28 mg/kg) had the highest content. Global distribution of total arsenic in rice was modeled by weighting each country’s arsenic distribution by that country’s contribution to global production. A subset of 63 samples from Bangladesh, China, India, Italy, and the U.S. was analyzed for arsenic species. The relationship between inorganic arsenic content versus total arsenic content significantly differed among countries, with Bangladesh and India having the steepest slope in linear regression, and the U.S. having the shallowest slope. Using country-specific rice consumption data, daily intake of inorganic arsenic was estimated and the associated internal cancer risk was calculated using the U.S. Environmental Protection Agency (EPA) cancer slope. Median excess internal cancer risks posed by inorganic arsenic ranged 30-fold for the 5 countries examined, being 0.7 per 10,000 for Italians to 22 per 10,000 for Bangladeshis, when a 60 kg person was considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-molecular-weight (LMW) glutenin subunits are components of the highly cross-linked glutenin polymers that confer viscoelastic properties to gluten and dough. They have both quantitative and qualitative effects on dough quality that may relate to differences in their ability to form the inter-chain disulphide bonds that stabilise the polymers. In order to determine the relationship between dough quality and the amounts and properties of the LMW subunits, we have transformed the pasta wheat cultivars Svevo and Ofanto with three genes encoding proteins, which differ in their numbers or positions of cysteine residues. The transgenes were delivered under control of the high-molecular-weight (HMW) subunit 1Dx5 gene promoter and terminator regions, and the encoded proteins were C-terminally tagged by the introduction of the c-myc epitope. Stable transformants were obtained with both cultivars, and the use of a specific antibody to the c-myc epitope tag allowed the transgene products to be readily detected in the complex mixture of LMW subunits. A range of transgene expression levels was observed. The addition of the epitope tag did not compromise the correct folding of the trangenic subunits and their incorporation into the glutenin polymers. Our results demonstrate that the ability to specifically epitope-tag LMW glutenin transgenes can greatly assist in the elucidation of their individual contributions to the functionality of the complex gluten system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the molecular biological changes underlying the process of embryogenesis is important for the improvement of somatic embryogenesis of coconut. Among the transcription factors that control the transition from vegetative to embryogenic growth, members of APETALA2/Ethylene-responsive element binding protein domain family play an important role in promoting embryo development. Significant insights into the role of AP2 genes have been obtained by the ectopic expression of AP2 sub family genes in transgenic Arabidopsis. A homolog of the AINTEGUMENTA-like gene that encodes the two AP2 domains and the linker region was identified in the coconut genome. Phylogenetic analysis showed that this gene, CnANT, encodes a protein that branched with BABY BOOM/PLETHORA clade in the AINTEGUMENTA-like major clade and was similar to the oil palm EgAP2-1 protein. According to real time RT-PCR results, higher expression of CnANT was observed in more mature zygotic embryos. Also, high CnANT expression was recorded in embryogenic callus compared to other stages of somatic embryogenesis. We examined the effect of ectopic CnANT expression on the development and regenerative capacity of transgenic Arabidopsis. Overexpression of CnANT in Arabidopsis induced hormone free regeneration of explants. Furthermore, ectopic expression of CnANT enhanced regeneration in vitro and suggested a role for this gene in cell proliferation during in vitro culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review summarises the history of transgenic (GM) cereals, principally maize, and then focuses on the scientific literature published in the last two years. It describes the production of GM cereals with modified traits, divided into input traits and output traits. The first category includes herbicide tolerance and insect resistance, and resistance to abiotic and biotic stresses; the second includes altered grains for starch, protein or nutrient quality, the use of cereals for the production of high value medical or other products, and the generation of plants with improved efficiency of biofuel production. Using data from field trial and patent databases the review considers the diversity of GM lines being tested for possible future development. It also summarises the dichotomy of response to GM products in various countries, describes the basis for the varied public acceptability of such products, and assesses the development of novel breeding techniques in the light of current GM regulatory procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Reduction of vegetation height is recommended as a management strategy for controlling rodent pests of rice in South-east Asia, but there are limited field data to assess its effectiveness. The breeding biology of the main pest species of rodent in the Philippines, Rattus tanezumi, suggests that habitat manipulation in irrigated rice–coconut cropping systems may be an effective strategy to limit the quality and availability of their nesting habitat. The authors imposed a replicated manipulation of vegetation cover in adjacent coconut groves during a single rice-cropping season, and added artificial nest sites to facilitate capture and culling of young. RESULTS: Three trapping sessions in four rice fields (two treatments, two controls) adjacent to coconut groves led to the capture of 176 R. tanezumi, 12Rattus exulans and seven Chrotomysmindorensis individuals. There was no significant difference in overall abundance between crop stages or between treatments, and there was no treatment effect on damage to tillers or rice yield. Only two R. tanezumi were caught at the artificial nest sites. CONCLUSION: Habitat manipulation to reduce the quality of R. tanezumi nesting habitat adjacent to rice fields is not effective as a lone rodent management tool in rice–coconut cropping systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Claviceps purpurea is a biotrophic fungal pathogen of grasses causing the ergot disease. The infection process of C. purpurea on rye flowers is accompanied by pectin degradation and polygalacturonase (PG) activity represents a pathogenicity factor. Wheat is also infected by C. purpurea and we tested whether the presence of polygalacturonase inhibiting protein (PGIP) can affect pathogen infection and ergot disease development. Wheat transgenic plants expressing the bean PvPGIP2 did not show a clear reduction of disease symptoms when infected with C. purpurea. To ascertain the possible cause underlying this lack of improved resistance of PvPGIP2 plants, we expressed both polygalacturonases present in the C. purpurea genome, cppg1 and cppg2 in Pichia pastoris. In vitro assays using the heterologous expressed PGs and PvPGIP2 showed that neither PG is inhibited by this inhibitor. To further investigate the role of PG in the C. purpurea/wheat system, we demonstrated that the activity of both PGs of C. purpurea is reduced on highly methyl esterified pectin. Finally, we showed that this reduction in PG activity is relevant in planta, by inoculating with C. purpurea transgenic wheat plants overexpressing a pectin methyl esterase inhibitor (PMEI) and showing a high degree of pectin methyl esterification. We observed reduced disease symptoms in the transgenic line compared with null controls. Together, these results highlight the importance of pectin degradation for ergot disease development in wheat and sustain the notion that inhibition of pectin degradation may represent a possible route to control of ergot in cereals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article forecasts the extent to which the potential benefits of adopting transgenic crops may be reduced by costs of compliance with coexistence regulations applicable in various member states of the EU. A dynamic economic model is described and used to calculate the potential yield and gross margin of a set of crops grown in a selection of typical rotation scenarios. The model simulates varying levels of pest, weed, and drought pressures, with associated management strategies regarding pesticide and herbicide application, and irrigation. We report on the initial use of the model to calculate the net reduction in gross margin attributable to coexistence costs for insect-resistant (IR) and herbicide-tolerant (HT) maize grown continuously or in a rotation, HT soya grown in a rotation, HT oilseed rape grown in a rotation, and HT sugarbeet grown in a rotation. Conclusions are drawn about conditions favoring inclusion of a transgenic crop in a crop rotation, having regard to farmers’ attitude toward risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme temperature during reproductive development affects rice (Oryza sativa L.) yield and seed quality. A controlled-environment reciprocal-transfer experiment was designed where plants from two japonica cultivars were grown at 28/24 ⁰C and moved to 18/14 ⁰C and vice versa, or from 28/24 to 38/34 ⁰C and vice versa, for 7-d periods to determine the respective temporal pattern of sensitivity of spikelet fertility, yield, and seed viability to each temperature extreme. Spikelet fertility and seed yield per panicle were severely reduced by extreme temperature in the 14 d period prior to anthesis; and both cultivars were affected at 38/34 ⁰C while only cv. Gleva was affected at 18/14 ºC. The damage was greater the earlier the panicles were stressed within this period. Later-exserted panicles compensated only partly for yield loss. Seed viability was significantly reduced by 7-d exposure to 38/34 ⁰C or 18/14 ⁰C at 1 to 7 and 1 to 14 d after anthesis, respectively, in cv. Gleva. Cultivar Taipei 309 was not affected by 7 d exposure at 18/14 ⁰C; and no consistent temporal pattern of sensitivity was evident at 38/34 ⁰C. Hence, brief exposure to low or high temperature was most damaging to spikelet fertility and yield 14 to 7 d before anthesis, coinciding with microsporogenesis; and it was almost as damaging around anthesis. Seed viability was most vulnerable to low or high temperature in the 7 or 14 d after anthesis, when histodifferentiation occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change is increasing night temperature (NT) more than day temperature (DT) in rice-growing areas. Effects of combinations of NT (24-35°C) from microsporogenesis to anthesis at one or more DT (30 or 35°C) at anthesis on rice spikelet fertility, temperature within spikelets, flowering pattern, grain weight per panicle, amylose content and gel consistency were investigated in contrasting rice cultivars under controlled environments. Cultivars differed in spikelet fertility response to high NT, with higher fertility associated with cooler spikelets (P < 0.01). Flowering dynamics were altered by high NT and a novel high temperature tolerance complementary mechanism, shorter flower open duration in cv. N22, was identified. High NT reduced spikelet fertility, grain weight per panicle, amylose content and gel consistency, whereas high DT reduced only gel consistency. Night temperature >27°C was estimated to reduce grain weight. Generally, high NT was more damaging to grain weight and selected grain quality traits than high DT, with little or no interaction between them. The critical tolerance and escape traits identified, i.e. spikelet cooling, relatively high spikelet fertility, earlier start and peak time of anthesis and shorter spikelet anthesis duration can aid plant breeding programs targeting resilience in warmer climates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resilience of rice cropping systems to potential global climate change will partly depend on temperature tolerance of pollen germination (PG) and tube growth (PTG). Germination of pollen of high temperature susceptible Oryza glaberrima Steud. (cv. CG14) and O. sativa L. ssp. indica (cv. IR64) and high temperature tolerant O. sativa ssp. aus (cv. N22), was assessed on a 5.6-45.4°C temperature gradient system. Mean maximum PG was 85% at 27°C with 1488 μm PTG at 25°C. The hypothesis that in each pollen grain, minimum temperature requirements (Tn) and maximum temperature limits (Tx) for germination operate independently was accepted by comparing multiplicative and subtractive probability models. The maximum temperature limit for PG in 50% of grains (Tx(50)) was lowest (29.8°C) in IR64 compared with CG14 (34.3°C) and N22 (35.6°C). Standard deviation (sx) of Tx was also low in IR64 (2.3°C) suggesting that the mechanism of IR64's susceptibility to high temperatures may relate to PG. Optimum germination temperatures and thermal times for 1mm PTG were not linked to tolerating high temperatures at anthesis. However, the parameters Tx(50) and sx in the germination model define new pragmatic criteria for successful and resilient PG, preferable to the more traditional cardinal (maximum and minimum) temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Background and Aims Earlier studies have suggested that the drying conditions routinely used by genebanks may not be optimal for subsequent seed longevity. The aim of this study was to compare the effect of hot-air drying with low temperature drying on subsequent seed longevity for 20 diverse rice accessions and to consider how factors related to seed production history might influence the results. • Methods Seeds were produced according to normal regeneration procedures at IRRI. They were harvested at different times (harvest date and days after anthesis (DAA), once for each accession) and dried either in a drying room (DR; 15% RH, 15°C), or in a flat-bed heated-air batch dryer (BD; 45°C, 8 h d-1) for up to 6 daily cycles followed by drying in the DR. Relative longevity was assessed by storage at 10.9% moisture content (m.c.) and 45°C. • Key Results Initial drying in the BD resulted in significantly greater longevity compared with the DR for 14 accessions (seed lots): the period of time for viability to fall to 50% for seeds dried in the BD as a percentage of that for seeds dried throughout in the DR varied between 1.3 and 372.2% for these 14 accessions. The seed lots that responded the most were harvested earlier in the season and at higher moisture content. Drying in the BD did not reduce subsequent longevity compared with DR drying for any of the remaining accessions. • Conclusions Seeds harvested at a m.c. where, according to the moisture desorption isotherm, they could still be metabolically active (>16.2%), may be in the first stage of the post-mass maturity, desiccation phase of seed development and able to increase longevity in response to hot-air drying. The genebank standards regarding seed drying for rice and, perhaps, for other tropical species should be reconsidered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell wall polysaccharides of wheat and rice endosperm are an important source of dietary fibre. Monoclonal antibodies specific to cell wall polysaccharides were used to determine polysaccharide dynamics during the development of both wheat and rice grain. Wheat and rice grain present near synchronous developmental processes and significantly different endosperm cell wall compositions, allowing the localisation of these polysaccharides to be related to developmental changes. Arabinoxylan (AX) and mixed-linkage glucan (MLG) have analogous cellular locations in both species, with deposition of AX and MLG coinciding with the start of grain filling. A glucuronoxylan (GUX) epitope was detected in rice, but not wheat endosperm cell walls. Callose has been reported to be associated with the formation of cell wall outgrowths during endosperm cellularisation and xyloglucan is here shown to be a component of these anticlinal extensions, occurring transiently in both species. Pectic homogalacturonan (HG) was abundant in cell walls of maternal tissues of wheat and rice grain, but only detected in endosperm cell walls of rice in an unesterified HG form. A rhamnogalacturonan-I (RG-I) backbone epitope was observed to be temporally regulated in both species, detected in endosperm cell walls from 12 DAA in rice and 20 DAA in wheat grain. Detection of the LM5 galactan epitope showed a clear distinction between wheat and rice, being detected at the earliest stages of development in rice endosperm cell walls, but not detected in wheat endosperm cell walls, only in maternal tissues. In contrast, the LM6 arabinan epitope was detected in both species around 8 DAA and was transient in wheat grain, but persisted in rice until maturity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

5-Hydroxymethylcytosine (5hmC), a modified form of cytosine that is considered the sixth nucleobase in DNA, has been detected in mammals and is believed to play an important role in gene regulation. In this study, 5hmC modification was detected in rice by employing a dot-blot assay, and its levels was further quantified in DNA from different rice tissues using liquid chromatography-multistage mass spectrometry (LC-MS/MS/MS). The results showed large intertissue variation in 5hmC levels. The genome-wide profiles of 5hmC modification in three different rice cultivars were also obtained using a sensitive chemical labelling followed by a next-generation sequencing method. Thousands of 5hmC peaks were identified, and a comparison of the distributions of 5hmC among different rice cultivars revealed the specificity and conservation of 5hmC modification. The identified 5hmC peaks were significantly enriched in heterochromatin regions,and mainly located in transposable element (TE) genes, especially around retrotransposons. The correlation analysis of 5hmC and gene expression data revealed a close association between 5hmC and silent TEs. These findings provide a resource for plant DNA 5hmC epigenetic studies and expand our knowledge of 5hmC modification.

Relevância:

20.00% 20.00%

Publicador: