123 resultados para Time equivalent approach
Resumo:
Data assimilation refers to the problem of finding trajectories of a prescribed dynamical model in such a way that the output of the model (usually some function of the model states) follows a given time series of observations. Typically though, these two requirements cannot both be met at the same time–tracking the observations is not possible without the trajectory deviating from the proposed model equations, while adherence to the model requires deviations from the observations. Thus, data assimilation faces a trade-off. In this contribution, the sensitivity of the data assimilation with respect to perturbations in the observations is identified as the parameter which controls the trade-off. A relation between the sensitivity and the out-of-sample error is established, which allows the latter to be calculated under operational conditions. A minimum out-of-sample error is proposed as a criterion to set an appropriate sensitivity and to settle the discussed trade-off. Two approaches to data assimilation are considered, namely variational data assimilation and Newtonian nudging, also known as synchronization. Numerical examples demonstrate the feasibility of the approach.
Resumo:
The task of this paper is to develop a Time-Domain Probe Method for the reconstruction of impenetrable scatterers. The basic idea of the method is to use pulses in the time domain and the time-dependent response of the scatterer to reconstruct its location and shape. The method is based on the basic causality principle of timedependent scattering. The method is independent of the boundary condition and is applicable for limited aperture scattering data. In particular, we discuss the reconstruction of the shape of a rough surface in three dimensions from time-domain measurements of the scattered field. In practise, measurement data is collected where the incident field is given by a pulse. We formulate the time-domain fieeld reconstruction problem equivalently via frequency-domain integral equations or via a retarded boundary integral equation based on results of Bamberger, Ha-Duong, Lubich. In contrast to pure frequency domain methods here we use a time-domain characterization of the unknown shape for its reconstruction. Our paper will describe the Time-Domain Probe Method and relate it to previous frequency-domain approaches on sampling and probe methods by Colton, Kirsch, Ikehata, Potthast, Luke, Sylvester et al. The approach significantly extends recent work of Chandler-Wilde and Lines (2005) and Luke and Potthast (2006) on the timedomain point source method. We provide a complete convergence analysis for the method for the rough surface scattering case and provide numerical simulations and examples.
Resumo:
The administration of antisense oligonucleotides (AOs) to skip one or more exons in mutated forms of the DMD gene and so restore the reading frame of the transcript is one of the most promising approaches to treat Duchenne muscular dystrophy (DMD). At present, preclinical studies demonstrating the efficacy and safety of long-term AO administration have not been conducted. Furthermore, it is essential to determine the minimal effective dose and frequency of administration. In this study, two different low doses (LDs) of phosphorodiamidate morpholino oligomer (PMO) designed to skip the mutated exon 23 in the mdx dystrophic mouse were administered for up to 12 months. Mice treated for 50 weeks showed a substantial dose-related amelioration of the pathology, particularly in the diaphragm. Moreover, the generalized physical activity was profoundly enhanced compared to untreated mdx mice showing that widespread, albeit partial, dystrophin expression restores the normal activity in mdx mice. Our results show for the first time that a chronic long-term administration of LDs of unmodified PMO, equivalent to doses in use in DMD boys, is safe, significantly ameliorates the muscular dystrophic phenotype and improves the activity of dystrophin-deficient mice, thus encouraging the further clinical translation of this approach in humans.
Resumo:
With the rapid growth of information and technology, knowledge is a valuable asset in organisation which has become significant as a strategic resource. Many studies have focused on managing knowledge in organisations. In particular, knowledge transfer has become a significant issue concerned with the movement of knowledge across organisational boundaries. It enables the exploitation and application of existing knowledge for other organisations, reducing the time of creating knowledge, and minimising the cost of organisational learning. One way to capture knowledge in a transferrable form is through practice. In this paper, we discuss how organisations can transfer knowledge through practice effectively and propose a model for a semiotic approach to practice-oriented knowledge transfer. In this model, practice is treated as a sign that represents knowledge, and its localisation is analysed as a semiotic process.
Resumo:
High spatial resolution environmental data gives us a better understanding of the environmental factors affecting plant distributions at fine spatial scales. However, large environmental datasets dramatically increase compute times and output species model size stimulating the need for an alternative computing solution. Cluster computing offers such a solution, by allowing both multiple plant species Environmental Niche Models (ENMs) and individual tiles of high spatial resolution models to be computed concurrently on the same compute cluster. We apply our methodology to a case study of 4,209 species of Mediterranean flora (around 17% of species believed present in the biome). We demonstrate a 16 times speed-up of ENM computation time when 16 CPUs were used on the compute cluster. Our custom Java ‘Merge’ and ‘Downsize’ programs reduce ENM output files sizes by 94%. The median 0.98 test AUC score of species ENMs is aided by various species occurrence data filtering techniques. Finally, by calculating the percentage change of individual grid cell values, we map the projected percentages of plant species vulnerable to climate change in the Mediterranean region between 1950–2000 and 2020.
Resumo:
A favoured method of assimilating information from state-of-the-art climate models into integrated assessment models of climate impacts is to use the transient climate response (TCR) of the climate models as an input, sometimes accompanied by a pattern matching approach to provide spatial information. More recent approaches to the problem use TCR with another independent piece of climate model output: the land-sea surface warming ratio (φ). In this paper we show why the use of φ in addition to TCR has such utility. Multiple linear regressions of surface temperature change onto TCR and φ in 22 climate models from the CMIP3 multi-model database show that the inclusion of φ explains a much greater fraction of the inter-model variance than using TCR alone. The improvement is particularly pronounced in North America and Eurasia in the boreal summer season, and in the Amazon all year round. The use of φ as the second metric is beneficial for three reasons: firstly it is uncorrelated with TCR in state-of-the-art climate models and can therefore be considered as an independent metric; secondly, because of its projected time-invariance, the magnitude of φ is better constrained than TCR in the immediate future; thirdly, the use of two variables is much simpler than approaches such as pattern scaling from climate models. Finally we show how using the latest estimates of φ from climate models with a mean value of 1.6—as opposed to previously reported values of 1.4—can significantly increase the mean time-integrated discounted damage projections in a state-of-the-art integrated assessment model by about 15 %. When compared to damages calculated without the inclusion of the land-sea warming ratio, this figure rises to 65 %, equivalent to almost 200 trillion dollars over 200 years.
Resumo:
Drought characterisation is an intrinsically spatio-temporal problem. A limitation of previous approaches to characterisation is that they discard much of the spatio-temporal information by reducing events to a lower-order subspace. To address this, an explicit 3-dimensional (longitude, latitude, time) structure-based method is described in which drought events are defined by a spatially and temporarily coherent set of points displaying standardised precipitation below a given threshold. Geometric methods can then be used to measure similarity between individual drought structures. Groupings of these similarities provide an alternative to traditional methods for extracting recurrent space-time signals from geophysical data. The explicit consideration of structure encourages the construction of summary statistics which relate to the event geometry. Example measures considered are the event volume, centroid, and aspect ratio. The utility of a 3-dimensional approach is demonstrated by application to the analysis of European droughts (15 °W to 35°E, and 35 °N to 70°N) for the period 1901–2006. Large-scale structure is found to be abundant with 75 events identified lasting for more than 3 months and spanning at least 0.5 × 106 km2. Near-complete dissimilarity is seen between the individual drought structures, and little or no regularity is found in the time evolution of even the most spatially similar drought events. The spatial distribution of the event centroids and the time evolution of the geographic cross-sectional areas strongly suggest that large area, sustained droughts result from the combination of multiple small area (∼106 km2) short duration (∼3 months) events. The small events are not found to occur independently in space. This leads to the hypothesis that local water feedbacks play an important role in the aggregation process.
Resumo:
The last decade has seen successful clinical application of polymer–protein conjugates (e.g. Oncaspar, Neulasta) and promising results in clinical trials with polymer–anticancer drug conjugates. This, together with the realisation that nanomedicines may play an important future role in cancer diagnosis and treatment, has increased interest in this emerging field. More than 10 anticancer conjugates have now entered clinical development. Phase I/II clinical trials involving N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (PK1; FCE28068) showed a four- to fivefold reduction in anthracycline-related toxicity, and, despite cumulative doses up to 1680 mg/m2 (doxorubicin equivalent), no cardiotoxicity was observed. Antitumour activity in chemotherapy-resistant/refractory patients (including breast cancer) was also seen at doxorubicin doses of 80–320 mg/m2, consistent with tumour targeting by the enhanced permeability (EPR) effect. Hints, preclinical and clinical, that polymer anthracycline conjugation can bypass multidrug resistance (MDR) reinforce our hope that polymer drugs will prove useful in improving treatment of endocrine-related cancers. These promising early clinical results open the possibility of using the water-soluble polymers as platforms for delivery of a cocktail of pendant drugs. In particular, we have recently described the first conjugates to combine endocrine therapy and chemotherapy. Their markedly enhanced in vitro activity encourages further development of such novel, polymer-based combination therapies. This review briefly describes the current status of polymer therapeutics as anticancer agents, and discusses the opportunities for design of second-generation, polymer-based combination therapy, including the cocktail of agents that will be needed to treat resistant metastatic cancer.
Resumo:
A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC) and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM) simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009) with multimodel mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios) A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISSPUCCINI)and of the future by one CCM (CAM3.5). The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs). Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23Wm−2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08Wm−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of −0.05Wm−2, but which is within the stated range of −0.15 to +0.05Wm−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1Wm−2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in netCDF Climate and Forecast (CF) Metadata Convention at the PCMDI website (http://cmip-pcmdi.llnl.gov/).
Resumo:
In this paper we propose an alternative model of, what is often called, land value capture in the planning system. Based on development viability models, negotiations and policy formation regarding the level of planning obligations have taken place at the local level with little clear guidance on technique, approach and method. It is argued that current approaches are regressive and fail to reflect how the ability of sites to generate planning gain can vary over time and between sites. The alternative approach suggested here attempts to rationalise rather than replace the existing practice of development viability appraisal. It is based upon the assumption that schemes with similar development values should produce similar levels of return to the landowner, developer and other stakeholders in the development as well as similar levels of planning obligations in all parts of the country. Given the high level of input uncertainty in viability modelling, a simple viability model is ‘good enough’ to quantify the maximum level of planning obligations for a given level of development value. We have argued that such an approach can deliver a more durable, equitable, simpler, consistent and cheaper method for policy formation regarding planning obligations.
Resumo:
Boreal winter wind storm situations over Central Europe are investigated by means of an objective cluster analysis. Surface data from the NCEP-Reanalysis and ECHAM4/OPYC3-climate change GHG simulation (IS92a) are considered. To achieve an optimum separation of clusters of extreme storm conditions, 55 clusters of weather patterns are differentiated. To reduce the computational effort, a PCA is initially performed, leading to a data reduction of about 98 %. The clustering itself was computed on 3-day periods constructed with the first six PCs using "k-means" clustering algorithm. The applied method enables an evaluation of the time evolution of the synoptic developments. The climate change signal is constructed by a projection of the GCM simulation on the EOFs attained from the NCEP-Reanalysis. Consequently, the same clusters are obtained and frequency distributions can be compared. For Central Europe, four primary storm clusters are identified. These clusters feature almost 72 % of the historical extreme storms events and add only to 5 % of the total relative frequency. Moreover, they show a statistically significant signature in the associated wind fields over Europe. An increased frequency of Central European storm clusters is detected with enhanced GHG conditions, associated with an enhancement of the pressure gradient over Central Europe. Consequently, more intense wind events over Central Europe are expected. The presented algorithm will be highly valuable for the analysis of huge data amounts as is required for e.g. multi-model ensemble analysis, particularly because of the enormous data reduction.
Resumo:
A dynamic size-structured model is developed for phytoplankton and nutrients in the oceanic mixed layer and applied to extract phytoplankton biomass at discrete size fractions from remotely sensed, ocean-colour data. General relationships between cell size and biophysical processes (such as sinking, grazing, and primary production) of phytoplankton were included in the model through a bottom–up approach. Time-dependent, mixed-layer depth was used as a forcing variable, and a sequential data-assimilation scheme was implemented to derive model trajectories. From a given time-series, the method produces estimates of size-structured biomass at every observation, so estimates seasonal succession of individual phytoplankton size, derived here from remote sensing for the first time. From these estimates, normalized phytoplankton biomass size spectra over a period of 9 years were calculated for one location in the North Atlantic. Further analysis demonstrated that strong relationships exist between the seasonal trends of the estimated size spectra and the mixed-layer depth, nutrient biomass, and total chlorophyll. The results contain useful information on the time-dependent biomass flux in the pelagic ecosystem.
Resumo:
The use of Bayesian inference in the inference of time-frequency representations has, thus far, been limited to offline analysis of signals, using a smoothing spline based model of the time-frequency plane. In this paper we introduce a new framework that allows the routine use of Bayesian inference for online estimation of the time-varying spectral density of a locally stationary Gaussian process. The core of our approach is the use of a likelihood inspired by a local Whittle approximation. This choice, along with the use of a recursive algorithm for non-parametric estimation of the local spectral density, permits the use of a particle filter for estimating the time-varying spectral density online. We provide demonstrations of the algorithm through tracking chirps and the analysis of musical data.
Resumo:
Aim Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location Europe. Methods We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000 yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.
Resumo:
In this paper the properties of a hydro-meteorological forecasting system for forecasting river flows have been analysed using a probabilistic forecast convergence score (FCS). The focus on fixed event forecasts provides a forecaster's approach to system behaviour and adds an important perspective to the suite of forecast verification tools commonly used in this field. A low FCS indicates a more consistent forecast. It can be demonstrated that the FCS annual maximum decreases over the last 10 years. With lead time, the FCS of the ensemble forecast decreases whereas the control and high resolution forecast increase. The FCS is influenced by the lead time, threshold and catchment size and location. It indicates that one should use seasonality based decision rules to issue flood warnings.