93 resultados para Terrorism -- Southeast Asia
Resumo:
Reliable evidence of trends in the illegal ivory trade is important for informing decision making for elephants but it is difficult to obtain due to the covert nature of the trade. The Elephant Trade Information System, a global database of reported seizures of illegal ivory, holds the only extensive information on illicit trade available. However inherent biases in seizure data make it difficult to infer trends; countries differ in their ability to make and report seizures and these differences cannot be directly measured. We developed a new modelling framework to provide quantitative evidence on trends in the illegal ivory trade from seizures data. The framework used Bayesian hierarchical latent variable models to reduce bias in seizures data by identifying proxy variables that describe the variability in seizure and reporting rates between countries and over time. Models produced bias-adjusted smoothed estimates of relative trends in illegal ivory activity for raw and worked ivory in three weight classes. Activity is represented by two indicators describing the number of illegal ivory transactions--Transactions Index--and the total weight of illegal ivory transactions--Weights Index--at global, regional or national levels. Globally, activity was found to be rapidly increasing and at its highest level for 16 years, more than doubling from 2007 to 2011 and tripling from 1998 to 2011. Over 70% of the Transactions Index is from shipments of worked ivory weighing less than 10 kg and the rapid increase since 2007 is mainly due to increased consumption in China. Over 70% of the Weights Index is from shipments of raw ivory weighing at least 100 kg mainly moving from Central and East Africa to Southeast and East Asia. The results tie together recent findings on trends in poaching rates, declining populations and consumption and provide detailed evidence to inform international decision making on elephants.
Resumo:
This response examines what is overlooked in Sylvester’s analysis of similarities between the US police security response to the Boston marathon bombings (2013) and Kevin Powers’ fictionalized account of the US war operations in Al Tafar, Iraq (2004) and evaluates the consequences for our understanding of contemporary war. This is done by highlighting differences between the experience of residents in Boston and the (real) town of Tal Afar, key among them the insecurity, fear and calamity that result from the distinct political realities in these locations. The experience of war from the perspective of the victims adds an important dimension to the debate over the changing nature of war. At a time that is marked by an unprecedented level of technologization and visual mediation, it brings into focus the fragmentary and often one-sided evidence on which our knowledge of contemporary war is based. It reminds us to ask not only what we know about war, but how we know it.
Resumo:
The Weather Research and Forecasting model was applied to analyze variations in the planetary boundary layer (PBL) structure over Southeast England including central and suburban London. The parameterizations and predictive skills of two nonlocal mixing PBL schemes, YSU and ACM2, and two local mixing PBL schemes, MYJ and MYNN2, were evaluated over a variety of stability conditions, with model predictions at a 3 km grid spacing. The PBL height predictions, which are critical for scaling turbulence and diffusion in meteorological and air quality models, show significant intra-scheme variance (> 20%), and the reasons are presented. ACM2 diagnoses the PBL height thermodynamically using the bulk Richardson number method, which leads to a good agreement with the lidar data for both unstable and stable conditions. The modeled vertical profiles in the PBL, such as wind speed, turbulent kinetic energy (TKE), and heat flux, exhibit large spreads across the PBL schemes. The TKE predicted by MYJ were found to be too small and show much less diurnal variation as compared with observations over London. MYNN2 produces better TKE predictions at low levels than MYJ, but its turbulent length scale increases with height in the upper part of the strongly convective PBL, where it should decrease. The local PBL schemes considerably underestimate the entrainment heat fluxes for convective cases. The nonlocal PBL schemes exhibit stronger mixing in the mean wind fields under convective conditions than the local PBL schemes and agree better with large-eddy simulation (LES) studies.
Resumo:
The aerosol direct radiative effect (DRE) of African smoke was analyzed in cloud scenes over the southeast Atlantic Ocean, using Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Hadley Centre Global Environmental Model version 2 (HadGEM2) climate model simulations. The observed mean DRE was about 30–35 W m−2 in August and September 2006–2009. In some years, short episodes of high-aerosol DRE can be observed, due to high-aerosol loadings, while in other years the loadings are lower but more prolonged. Climate models that use evenly distributed monthly averaged emission fields will not reproduce these high-aerosol loadings. Furthermore, the simulated monthly mean aerosol DRE in HadGEM2 is only about 6 W m−2 in August. The difference with SCIAMACHY mean observations can be partly explained by an underestimation of the aerosol absorption Ångström exponent in the ultraviolet. However, the subsequent increase of aerosol DRE simulation by about 20% is not enough to explain the observed discrepancy between simulations and observations.
Resumo:
Previous studies have shown that the Indo-Pacific atmospheric response to ENSO comprises two dominant modes of variability: a meridionally quasi-symmetric response (independent from the annual cycle) and an anti-symmetric response (arising from the nonlinear atmospheric interaction between ENSO variability and the annual cycle), referred to as the combination mode (C-Mode). This study demonstrates that the direct El Niño signal over the tropics is confined to the equatorial region and has no significant impact on the atmospheric response over East Asia. The El Niño-associated equatorial anomalies can be expanded towards off-equatorial regions by the C-Mode through ENSO’s interaction with the annual cycle. The C-Mode is the prime driver for the development of an anomalous low-level anticyclone over the western North Pacific (WNP) during the El Niño decay phase, which usually transports more moisture to East Asia and thereby causes more precipitation over southern China. We use an Atmospheric General Circulation Model that well reproduces the WNP anticyclonic anomalies when both El Niño sea surface temperature (SST) anomalies as well as the SST annual cycle are prescribed as boundary conditions. However, no significant WNP anticyclonic circulation anomaly appears during the El Niño decay phase when excluding the SST annual cycle. Our analyses of observational data and model experiments suggest that the annual cycle plays a key role in the East Asian climate anomalies associated with El Niño through their nonlinear atmospheric interaction. Hence, a realistic simulation of the annual cycle is crucial in order to correctly capture the ENSO-associated climate anomalies over East Asia.
Resumo:
Climate change is often cited as a major factor in social change. The so-called 8.2 ka event was one of the most pronounced and abrupt Holocene cold and arid events. The 9.2 ka event was similar, albeit of a smaller magnitude. Both events affected the Northern Hemisphere climate and caused cooling and aridification in Southwest Asia. Yet, the impacts of the 8.2 and 9.2 ka events on early farming communities in this region are not well understood. Current hypotheses for an effect of the 8.2 ka event vary from large-scale site abandonment and migration (including the Neolithisation of Europe) to continuation of occupation and local adaptation, while impacts of the 9.2 ka have not previously been systematically studied. In this paper, we present a thorough assessment of available, quality-checked radiocarbon (14C) dates for sites from Southwest Asia covering the time interval between 9500 and 7500 cal BP, which we interpret in combination with archaeological evidence. In this way, the synchronicity between changes observed in the archaeological record and the rapid climate events is tested. It is shown that there is no evidence for a simultaneous and widespread collapse, large-scale site abandonment, or migration at the time of the events. However, there are indications for local adaptation. We conclude that early farming communities were resilient to the abrupt, severe climate changes at 9250 and 8200 cal BP.
Resumo:
An aim of government and the international community is to respond to global processes and crises through a range of policy and practical approaches that help limit damage from shocks and stresses. Three approaches to vulnerability reduction that have become particularly prominent in recent years are social protection (SP), disaster risk reduction (DRR) and climate change adaptation (CCA). Although these approaches have much in common, they have developed separately over the last two decades. However, given the increasingly complex and interlinked array of risks that poor and vulnerable people face, it is likely that they will not be sufficient in the long run if they continue to be applied in isolation from one another. In recognition of this challenge, the concept of Adaptive Social Protection (ASP) has been developed. ASP refers to a series of measures which aims to build resilience of the poorest and most vulnerable people to climate change by combining elements of SP, DRR and CCA in programmes and projects. The aim of this paper is to provide an initial assessment of the ways in which these elements are being brought together in development policy and practice. It does this by conducting a meta-analysis of 124 agricultural programmes implemented in five countries in south Asia. These are Afghanistan, Bangladesh, India, Nepal and Pakistan. The findings show that full integration of SP, DRR and CCA is relatively limited in south Asia, although there has been significant progress in combining SP and DRR in the last ten years. Projects that combine elements of SP, DRR and CCA tend to emphasise broad poverty and vulnerability reduction goals relative to those that do not. Such approaches can provide valuable lessons and insights for the promotion of climate resilient livelihoods amongst policymakers and practitioners.
Resumo:
Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000–2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October–January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo–Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.
Resumo:
Northeast Asia experienced a severe drought in summer 2014. Sea surface temperature forcing may have increased the risk of low precipitation, but model biases preclude reliable attribution to anthropogenic forcing.
Resumo:
The Middle East and Southwest Asia comprise a region that is water-stressed, societally vulnerable, and prone to severe droughts. Large-scale climate variability, particularly La Niña, appears to play an important role in region-wide drought, including the two most severe of the last fifty years—1999-2001 and 2007-2008—with implications for drought forecasting. Important dynamical factors include orography, thermodynamic influence on vertical motion, storm track changes, and moisture transport. Vegetation in the region is strongly impacted by drought and may provide an important feedback mechanism. In future projections, drying of the eastern Mediterranean is a robust feature, as are temperature increases throughout the region, which will affect evaporation and the timing and intensity of snowmelt. Vegetation feedbacks may become more important in a warming climate. There are a wide range of outstanding issues for understanding, monitoring, and predicting drought in the region, including: dynamics of the regional storm track, the relative importance of the range of dynamical mechanisms related to drought, regional coherence of drought, the relationship between synoptic-scale mechanisms and drought, predictability of vegetation and crop yields, stability of remote influences, data uncertainty, and the role of temperature. Development of a regional framework for cooperative work and dissemination of information and existing forecasts would speed understanding and make better use of available information.