80 resultados para System of global interdependence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main causes of biodiversity decline are related to human use of resources, which is ultimately triggered by the socioeconomic decisions made by individuals and nations. Characterizing the socioeconomic attributes of areas in which biodiversity is most threatened can help us identify decisions and conditions that promote the presence or absence of threats and potentially suggest more sustainable strategies. In this study we explored how diverse indicators of social and economic development correlate with the conservation status of terrestrial mammals within countries explicitly exploring hypothesized linear and quadratic relationships. First, comparing countries with and without threatened mammals we found that those without threatened species are a disparate group formed by European countries and Small Island Developing States (SIDS) with little in common besides their slow population growth and a past of human impacts. Second, focusing on countries with threatened mammals we found that those with a more threatened mammalian biota have mainly rural populations, are predominantly exporters of goods and services, receive low to intermediate economic benefits from international tourism, and have medium to high human life expectancy. Overall, these results provide a comprehensive characterization of the socioeconomic profiles linked to mammalian conservation status of the world's nations, highlighting the importance of transborder impacts reflected by the international flux of goods, services and people. Further studies would be necessary to unravel the actual mechanisms and threats that link these socioeconomic profiles and indicators with mammalian conservation. Nevertheless, this study presents a broad and complete characterization that offers testable hypotheses regarding how socioeconomic development associates with biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intercomparison and evaluation of the global ocean surface mixed layer depth (MLD) fields estimated from a suite of major ocean syntheses are conducted. Compared with the reference MLDs calculated from individual profiles, MLDs calculated from monthly mean and gridded profiles show negative biases of 10–20 m in early spring related to the re-stratification process of relatively deep mixed layers. Vertical resolution of profiles also influences the MLD estimation. MLDs are underestimated by approximately 5–7 (14–16) m with the vertical resolution of 25 (50) m when the criterion of potential density exceeding the 10-m value by 0.03 kg m−3 is used for the MLD estimation. Using the larger criterion (0.125 kg m−3) generally reduces the underestimations. In addition, positive biases greater than 100 m are found in wintertime subpolar regions when MLD criteria based on temperature are used. Biases of the reanalyses are due to both model errors and errors related to differences between the assimilation methods. The result shows that these errors are partially cancelled out through the ensemble averaging. Moreover, the bias in the ensemble mean field of the reanalyses is smaller than in the observation-only analyses. This is largely attributed to comparably higher resolutions of the reanalyses. The robust reproduction of both the seasonal cycle and interannual variability by the ensemble mean of the reanalyses indicates a great potential of the ensemble mean MLD field for investigating and monitoring upper ocean processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, either using well-founded empirical relationships or process-based models with good predictive skill. A large variety of models exist today and it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project - FireMIP, an international project to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we summarise the current state-of-the-art in fire regime modelling and model evaluation, and outline what essons may be learned from FireMIP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions1. Metric choice can affect the relative emphasis placed on reductions of ‘cumulative climate pollutants’ such as carbon dioxide versus ‘short-lived climate pollutants’ (SLCPs), including methane and black carbon2, 3, 4, 5, 6. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20–40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century7, 8, 9, 10, which may be necessary to limit warming to “well below 2 °C” (ref. 1). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP11, 12, 13. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.