184 resultados para Summer monsoon
Resumo:
This paper shows how the rainfall distribution over the UK, in the three major events on 13-15 June, 25 June and 20 July 2007, was related to troughs in the upper-level flow, and investigates the relationship of these features to a persistent large-scale flow pattern which extended around the northern hemisphere and its possible origins. Remote influences can be mediated by the propagation of large-scale atmospheric waves across the northern hemisphere and also by the origins of the air-masses that are wrapped into the developing weather systems delivering the rain to the UK. These dynamical influences are examined using analyses and forecasts produced by a range of atmospheric models.
Resumo:
Variability in aspects of the hydrological cycle over the Europe-Atlantic region during the summer season is analysed for the period 1979-2007, using observational estimates, reanalyses and climate model simulations. Warming and moistening trends are evident in observations and models although decadal changes in water vapour are not well represented by reanalyses, including the new European Centre for Medium Range Weather Forecasts (ECMWF) Interim reanalysis. Over the north Atlantic and northern Europe, observed water vapour trends are close to that expected from the temperature trends and Clausius-Clapeyron equation (7% K-1), larger than the model simulations. Precipitation over Europe is dominated by large-scale dynamics with positive phases of the North Atlantic Oscillation coinciding with drier conditions over north Europe and wetter conditions over the Mediterranean region. Evaporation trends over Europe are positive in reanalyses and models, especially for the Mediterranean region (1-3% per decade in reanalyses and climate models). Over the north Atlantic, declining precipitation combined with increased moisture contributed to an apparent rise in water vapour residence time. Maximum precipitation minus evaporation over the north Atlantic occurred during summer 1991, declining thereafter.
Resumo:
The East Asian Winter Monsoon (EAWM) and Siberian High (SH) are inherently related, based on prior studies of instrumental data available for recent decades (since 1958). Here we develop an extended instrumental EAWM index since 1871 that correlates significantly with the SH. These two indices show common modes of variation on the biennial (2-3 year) time scale. We also develop an index of the pressure gradient between the SH and the Aleutian Low, a gradient which critically impacts EAWM variability. This difference series, based on tree-ring reconstructions of the SH and the North Pacific Index (NPI) over the past 400 years, shows that the weakening of this gradient in recent decades has not been unusual in a long-term context. Correlations between the SH series and a tree-ring reconstruction of the El Nino-Southern Oscillation (ENSO) suggest a variable tropical-higher latitude teleconnection.
Resumo:
Lacustrine sediments from southeastern Arabia reveal variations in lake level corresponding to changes in the strength and duration of Indian Ocean Monsoon (IOM) summer rainfall and winter cyclonic rainfall. The late glacial/Holocene transition of the region was characterised by the development of mega-linear dunes. These dunes became stabilised and vegetated during the early Holocene and interdunal lakes formed in response to the incursion of the IOM at approximately 8500 cal yr BP with the development of C3 dominated savanna grasslands. The IOM weakened ca. 6000 cal yr BP with the onset of regional aridity, aeolian sedimentation and dune reactivation and accretion. Despite this reduction in precipitation, the take was maintained by winter dominated rainfall. There was a shift to drier adapted C4 grasslands across the dune field. Lake sediment geochemical analyses record precipitation minima at 8200, 5000 and 4200 cal yr BP that coincide with Bond events in the North Atlantic. A number of these events correspond with changes in cultural periods, suggesting that climate was a key mechanism affecting human occupation and exploitation of this region. (c) 2006 University of Washington. All rights reserved.
Resumo:
In this study, the oceanic regions that are associated with anomalous Ethiopian summer rains were identified and the teleconnection mechanisms that give rise to these associations have been investigated. Because of the complexities of rainfall climate in the horn of Africa, Ethiopia has been subdivided into six homogeneous rainfall zones and the influence of SST anomalies was analysed separately for each zone. The investigation made use of composite analysis and modelling experiments. Two sets of composites of atmospheric fields were generated, one based on excess/deficit rainfall anomalies and the other based on warm/cold SST anomalies in specific oceanic regions. The aim of the composite analysis was to determine the link between SST and rainfall in terms of large scale features. The modelling experiments were intended to explore the causality of these linkage. The results show that the equatorial Pacific, the midlatitude northwest Pacific and the Gulf of Guinea all exert an influence on the summer rainfall in various part of the country. The results demonstrate that different mechanisms linked to sea surface temperature control variations in rainfall in different parts of Ethiopia. This has important consequences for seasonal forecasting models which are based on statistical correlations between SST and seasonal rainfall totals. It is clear that such statistical models should take account of the local variations in teleconnections.
Resumo:
A seasonal forecasting system that is capable of skilfully predicting rainfall totals on a regional scale would be of great value to Ethiopia. Here, we describe how a statistical model can exploit the teleconnections described in part 1 of this pair of papers to develop such a system. We show that, in most cases, the predictors selected objectively by the statistical model can be interpreted in the light of physical teleconnections with Ethiopian rainfall, and discuss why, in some cases, unexpected regions are chosen as predictors. We show that the forecast has skill in all parts of Ethiopia, and argue that this method could provide the basis of an operational seasonal forecasting system for Ethiopia.
Resumo:
Several aspects of terrestrial ecosystems are known to be associated with the North Atlantic Oscillation (NAO) through effects of the NAO on winter climate, but recently the winter NAO has also been shown to be correlated with the following summer climate, including drought. Since drought is a major factor determining grassland primary productivity, the hypothesis was tested that the winter NAO is associated with summer herbage growth through soil moisture availability, using data from the Park Grass Experiment at Rothamsted, UK between 1960 and 1999. The herbage growth rate, mean daily rainfall, mean daily potential evapotranspiration (PE) and the mean and maximum potential soil moisture deficit (PSMD) were calculated between the two annual cuts in early summer and autumn for the unlimed, unfertilized plots. Mean and maximum PSMD were more highly correlated than rainfall or PE with herbage growth rate. Regression analysis showed that the natural logarithm of the herbage growth rate approximately halved for a 250 mm increase in maximum PSMD over the range 50-485 mm. The maximum PSMD was moderately correlated with the preceding winter NAO, with a positive winter NAO index associated with greater maximum PSMD. A positive winter NAO index was also associated with low herbage growth rate, accounting for 22% of the interannual variation in the growth rate. It was concluded that the association between the winter NAO and summer herbage growth rate is mediated by the PSMD in summer.