107 resultados para Rule principles
Resumo:
This article demonstrates how early Pre-Raphaelite poetry worked according to the principle that art should be modelled on science theorised by the Pre-Raphaelites in their early essays. As the main theorists (rather than practitioners) of Pre-Raphaelite art, F. G. Stephens and William Michael Rossetti defined the Pre-Raphaelite project in terms of observation, investigation, experiment, the “adherence to fact” and the “search after truth”. In the hands of the early Pre-Raphaelite poets, and particularly Rossetti himself, poetry too becomes a mode of scientific enquiry into the natural world, the nature of observation, human psychology and medical practice.
Resumo:
According to dual-system accounts of English past-tense processing, regular forms are decomposed into their stem and affix (played=play+ed) based on an implicit linguistic rule, whereas irregular forms (kept) are retrieved directly from the mental lexicon. In second language (L2) processing research, it has been suggested that L2 learners do not have rule-based decomposing abilities, so they process regular past-tense forms similarly to irregular ones (Silva & Clahsen 2008), without applying the morphological rule. The present study investigates morphological processing of regular and irregular verbs in Greek-English L2 learners and native English speakers. In a masked-priming experiment with regular and irregular prime-target verb pairs (playedplay/kept-keep), native speakers showed priming effects for regular pairs, compared to unrelated pairs, indicating decomposition; conversely, L2 learners showed inhibitory effects. At the same time, both groups revealed priming effects for irregular pairs. We discuss these findings in the light of available theories on L2 morphological processing.
Resumo:
This chapter considers the possible use in armed conflict of low-yield (also known as tactical) nuclear weapons. The Legality of the Threat or Use of Nuclear Weapons Advisory Opinion maintained that it is a cardinal principle that a State must never make civilians an object of attack and must consequently never use weapons that are incapable of distinguishing between civilian and military targets. As international humanitarian law applies equally to any use of nuclear weapons, it is argued that there is no use of nuclear weapons that could spare civilian casualties particularly if you view the long-term health and environmental effects of the use of such weaponry.
Resumo:
Advances in hardware and software technologies allow to capture streaming data. The area of Data Stream Mining (DSM) is concerned with the analysis of these vast amounts of data as it is generated in real-time. Data stream classification is one of the most important DSM techniques allowing to classify previously unseen data instances. Different to traditional classifiers for static data, data stream classifiers need to adapt to concept changes (concept drift) in the stream in real-time in order to reflect the most recent concept in the data as accurately as possible. A recent addition to the data stream classifier toolbox is eRules which induces and updates a set of expressive rules that can easily be interpreted by humans. However, like most rule-based data stream classifiers, eRules exhibits a poor computational performance when confronted with continuous attributes. In this work, we propose an approach to deal with continuous data effectively and accurately in rule-based classifiers by using the Gaussian distribution as heuristic for building rule terms on continuous attributes. We show on the example of eRules that incorporating our method for continuous attributes indeed speeds up the real-time rule induction process while maintaining a similar level of accuracy compared with the original eRules classifier. We termed this new version of eRules with our approach G-eRules.
Resumo:
The chemisorption of CH4 on Pt{110}-(1 x 2) has been studied by vibrational analysis of the reaction pathway defined by the potential energy surface and, in time reversal, by first-principles molecular dynamics simulations of CH4 associative desorption, with the electronic structure treated explicitly using density functional theory. We find that the symmetric stretch vibration ν1 is strongly coupled to the reaction coordinate; our results therefore provide a firm theoretical basis for recently reported state-resolved reactivity measurements, which show that excitation of the ν1 normal mode is the most efficient way to enhance the reaction probability
Resumo:
Sulphide materials, in particular MoS2, have recently received great attention from the surface science community due to their extraordinary catalytic properties. Interestingly, the chemical activity of iron pyrite (FeS2) (the most common sulphide mineral on Earth), and in particular its potential for catalytic applications, has not been investigated so thoroughly. In this study, we use density functional theory (DFT) to investigate the surface interactions of fundamental atmospheric components such as oxygen and nitrogen, and we have explored the adsorption and dissociation of nitrogen monoxide (NO) and nitrogen dioxide (NO2) on the FeS2(100) surface. Our results show that both those environmentally important NOx species chemisorb on the surface Fe sites, while the S sites are basically unreactive for all the molecular species considered in this study and even prevent NO2 adsorption onto one of the non-equivalent Fe–Fe bridge sites of the (1 1)–FeS2(100) surface. From the calculated high barrier for NO and NO2 direct dissociation on this surface, we can deduce that both nitrogen oxides species are adsorbed molecularly on pyrite surfaces.
Resumo:
We have investigated the chemisorption of CH3D and CD3H on Pt{11 0}-(1 2) by performing first-principles molecular dynamics simulations of the recombinative desorption of CH3D (from adsorbed methyl and deuterium) and of CD3H (from adsorbed trideuteromethyl and hydrogen). Vibrational analysis of the symmetry adapted internal coordinates of the desorbing molecules shows that excitation of the single C– D (C–H) bond in the parent molecule is strongly correlated with energy excess in the reaction coordinate. The results of the molecular dynamics simulations are consistent with observed mode- and bond-specific reactivity measurements for chemisorption of methane and its isotopomers on platinum and nickel surfaces.
Resumo:
The most popular endgame tables (EGTs) documenting ‘DTM’ Depth to Mate in chess endgames are those of Eugene Nalimov but these do not recognise the FIDE 50-move rule ‘50mr’. This paper marks the creation by the first author of EGTs for sub-6-man (s6m) chess and beyond which give DTM as affected by the ply count pc. The results are put into the context of previous work recognising the 50mr and are compared with the original unmoderated DTM results. The work is also notable for being the first EGT generation work to use the functional programming language HASKELL.
Resumo:
Solving pharmaceutical crystal structures from powder diffraction data is discussed in terms of the methodologies that have been applied and the complexity of the structures that have been solved. The principles underlying these methodologies are summarized and representative examples of polymorph, solvate, salt and cocrystal structure solutions are provided, together with examples of some particularly challenging structure determinations.
Resumo:
We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand-receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.