136 resultados para Root lesion nematodes
Resumo:
Allochthonous Norway spruce stands in the Kysucké Beskydy Mts. (north-western Slovakia) have been exposed to substantial acid deposition in the recent past and grow in acidified soil conditions with mean pH of about 4.0 in the topsoil. We selected 90 spruce trees representing 30 triples of different crown status: healthy, stressed and declining to assess the relationship between crown and fine root status. Sequential coring and in-growth bags were applied to each triplet to investigate fine root biomass and growth in the soil depths of 0-10 and 10-20 cm. Fine root quantity (biomass and necromass), turnover (production over standing stock), morphological features (specific root length, root tip density) and chemical properties (Ca:Al molar ratio) were compared among the abovementioned health status categories. Living fine root biomass decreased with increasing stress, while the ratio of living to dead biomass increased. Annual fine root production decreased and specific root length increased in stressed trees when compared to healthy or declining trees, a situation which may be related to the position of trees in the canopy (healthy and declining – dominant, stressed – co-dominant). The Ca:Al ratio decreased with increasing crown damage, indicating a decreased ability to filter out aluminium. In conclusion, fine root status appears to be linked to visible crown damage and can be used as a tree health indicator.
Resumo:
This paper describes a computational and statistical study of the influence of morphological changes on the electrophysiological response of neurons from an animal model of Alzheimer's Disease (AD). We combined experimental morphological data from rat hippocampal CA1 pyramidal cells with a well-established model of active membrane properties. Dendritic morphology and the somatic response to simulated current clamp conditions were then compared for cells from the control and the AD group. The computational approach allowed us to single out the influences of neuromorphology on neuronal response by eliminating the effects of active channel variability. The results did not reveal a simple relationship between morphological changes associated with AD and changes in neural response. However, they did suggest the existence of more complex than anticipated relationships between dendritic morphology and single-cell electrophysiology.
Resumo:
The roots of Crytolepis sanguinolenta, a medicinally important ethanobotanical source of the antimalarial cryptolepine, were soxhlet extracted in anaerobic conditions, using hexane then ethanol. Samples of each extract were fractioned using flash chromatography and preparative TLC and compound identity was established using gradient HPLC-positive ion electrospray mass spectrometry. The use of argon depressed the formation of quindoline and hydroxycrytolepine. In addition to known compounds such as cryptolepine, several as yet unidentified compounds remain to be characterised in this root extract.
Resumo:
Mediterranean species are popular landscape plants in the UK and well suited to the predicted climate change scenarios of hotter, drier summers. What is less clear is how these species will respond to the more unpredictable rainfall patterns also anticipated, where soil water-logging may become more prevalent, especially in urban environments where soil sealing can restrict drainage. Pot experiments on flooding of four Mediterranean species (Cistus × hybridus, Lavandula angustifolia ‘Munstead’, Salvia officinalis and Stachys byzantina) showed that the effects of waterlogging were only severe when the temperature was high and flooding prolonged. All plants survived the flooding in winter, but during the summer a 17-day flood resulted in the death of 30-40% of the Salvia officinalis and Cistus × hybridus. To examine the response of roots to oxygen deprivation over a range of conditions from total absence of oxygen (anoxia), low oxygen (hypoxia) and full aeration, rooted cuttings of Salvia officinalis were grown in a hydroponic-based system and mixtures of oxygen and nitrogen gases bubbled through the media. Anoxia was found to reduce root development dramatically. When the plants were subjected to a period of hypoxia they responded by increasing the production of lateral roots close to the surface thus enabling them to acclimate to subsequent anoxia. This greatly increased their chances of survival.
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain
Resumo:
Dualism has long distinguished between the mental and the body experiences. Probing the structure and organisation of the self traditionally calls for a distinction between these two sides of the self coin. It is far beyond the scope of this chapter to address these philosophical issues, and our starting point will be the simple distinction between reflective processes involved in the elaboration of body image, self awareness and self-recognition (i.e. ‘the self’) and the sensori-motor dialogues involved in action control, reactions and automatisms (i.e. ‘the body’ schema). This oversimplification does not take into account the complex interactions taking place between these two levels of description, but our initial aim will be to distinguish between them, before addressing the question of their interactions. Cognitive and sensori-motor processes have frequently been distinguished (review: Rossetti and Revonsuo 2000), and it may be proposed that a similar dissociation can be put forward, a priori, between a central representation of self and a bodily representation corresponding to body schema (Figure 1).
Resumo:
This paper considers the effect of GARCH errors on the tests proposed byPerron (1997) for a unit root in the presence of a structural break. We assessthe impact of degeneracy and integratedness of the conditional varianceindividually and find that, apart from in the limit, the testing procedure isinsensitive to the degree of degeneracy but does exhibit an increasingover-sizing as the process becomes more integrated. When we consider the GARCHspecifications that we are likely to encounter in empirical research, we findthat the Perron tests are reasonably robust to the presence of GARCH and donot suffer from severe over-or under-rejection of a correct null hypothesis.
Resumo:
Ecosystems consist of aboveground and belowground subsystems and the structure of their communities is known to change with distance. However, most of this knowledge originates from visible, aboveground components, whereas relatively little is known about how soil community structure varies with distance and if this variability depends on the group of organisms considered. In the present study, we analyzed 30 grasslands from three neighboring chalk hill ridges in southern UK to determine the effect of geographic distance (1e198 km) on the similarity of bacterial communities and of nematode communities in the soil. We found that for both groups, community similarity decayed with distance and that this spatial pattern was not related to changes either in plant community composition or soil chemistry. Site history may have contributed to the observed pattern in the case of nematodes, since the distance effect depended on the presence of different nematode taxa at one of the hill ridges. On the other hand, site-related differences in bacterial community composition alone could not explain the spatial turnover, suggesting that other factors, such as biotic gradients and local dispersal processes that we did not include in our analysis, may be involved in the observed pattern. We conclude that, independently of the variety of causal factors that may be involved, the decay in similarity with geographic distance is a characteristic feature of both communities of soil bacteria and nematodes.
Resumo:
Fine roots constitute an interface between plants and soils and thus play a crucial part in forest carbon, nutrient and water cycles. Their continuous growth and dieback, often termed turnover of fine roots, may constitute a major carbon input to soils and significantly contribute to belowground carbon cycle. For this reason, it is of importance to accurately estimate not only the standing biomass of fine roots, but also its rate of turnover. To date, no direct and reliable method of measuring fine root turnover exists. The main reason for this is that the two component processes of root turnover, namely growth and dieback of fine roots, nearly always happen in the same place and at the same time. Further, the estimation of fine root turnover is complicated by the inaccessibility of tree root systems, its labour intensiveness and is often compounded by artefacts created by soil disturbance. Despite the fact that the elucidation of the patterns and controls of forest fine root turnover is of utmost importance for the development of realistic carbon cycle models, our knowledge of the contribution of fine root turnover to carbon and nutrient cycles in forests remains uncertain. This chapter will detail all major methods currently used for estimating fine root turnover and highlight their advantages, as well as drawbacks.
Resumo:
Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH_. In root cells, extracellular OH_ activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH_-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH_. An OH_-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.
Resumo:
Models of root system growth emerged in the early 1970s, and were based on mathematical representations of root length distribution in soil. The last decade has seen the development of more complex architectural models and the use of computer-intensive approaches to study developmental and environmental processes in greater detail. There is a pressing need for predictive technologies that can integrate root system knowledge, scaling from molecular to ensembles of plants. This paper makes the case for more widespread use of simpler models of root systems based on continuous descriptions of their structure. A new theoretical framework is presented that describes the dynamics of root density distributions as a function of individual root developmental parameters such as rates of lateral root initiation, elongation, mortality, and gravitropsm. The simulations resulting from such equations can be performed most efficiently in discretized domains that deform as a result of growth, and that can be used to model the growth of many interacting root systems. The modelling principles described help to bridge the gap between continuum and architectural approaches, and enhance our understanding of the spatial development of root systems. Our simulations suggest that root systems develop in travelling wave patterns of meristems, revealing order in otherwise spatially complex and heterogeneous systems. Such knowledge should assist physiologists and geneticists to appreciate how meristem dynamics contribute to the pattern of growth and functioning of root systems in the field.
Resumo:
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO(2)), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root-feeding insects to eCO(2) are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO(2) conditions are largely unexplored for root herbivore interactions. This study investigated how eCO(2) (700 mu mol mol-1) affected a root-feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root-feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO(2). Root biomass decreased by 16% in eCO(2), which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO(2) on root C and N concentrations. Weevils caused a sink in plants, resulting in 8-12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO(2) and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO(2), suggestive of defensive response, but caused a decrease under eCO(2). Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root-growth underpinned the negative effects of eCO(2) on vine weevils and speculate that the plant's failure to mount a defensive response at eCO(2) may have intensified these negative effects.