99 resultados para Reverse self-control problem
Resumo:
The self-memory relationship is thought to be bidirectional, in such a way that memories provide context for the self, and equally, the self exercises control over retrieval (Conway, 2005). Autobiographical memories are not distributed equally across the life span; instead, memories peak between ages 10 and 30. This reminiscence bump has been suggested to support the emergence of a stable and enduring self. In the present study, the relationship between memory accessibility and self was explored with a novel methodology that used generation of self images in the form of I am statements. Memories generated from I am cues clustered around the time of emergence for that particular self image. We argue that, when a new self-image is formed, it is associated with the encoding of memories that are relevant to that self and that remain highly accessible to the rememberer later in life. This study offers a new methodology for academics and clinicians interested in the relationship between memory and identity.
Resumo:
The paper describes a self-tuning adaptive PID controller suitable for use in the control of robotic manipulators. The scheme employs a simple recursive estimator which reduces the computational effort to an acceptable level for many applications in robotics.
Resumo:
The basic assumption from implicit self-tuning theory is that, for self tuning to occur, the control input obtained from the estimated system model converges to the value whic would be obtained if the system parameters were known. As as direct result of this, only certain control strategies are acceptable. Here a general rule for the self-tuning property of pole-placement self tuners is obtained, and previous strategies are shown to be special cases of this.
Resumo:
Numerical weather prediction (NWP) centres use numerical models of the atmospheric flow to forecast future weather states from an estimate of the current state. Variational data assimilation (VAR) is used commonly to determine an optimal state estimate that miminizes the errors between observations of the dynamical system and model predictions of the flow. The rate of convergence of the VAR scheme and the sensitivity of the solution to errors in the data are dependent on the condition number of the Hessian of the variational least-squares objective function. The traditional formulation of VAR is ill-conditioned and hence leads to slow convergence and an inaccurate solution. In practice, operational NWP centres precondition the system via a control variable transform to reduce the condition number of the Hessian. In this paper we investigate the conditioning of VAR for a single, periodic, spatially-distributed state variable. We present theoretical bounds on the condition number of the original and preconditioned Hessians and hence demonstrate the improvement produced by the preconditioning. We also investigate theoretically the effect of observation position and error variance on the preconditioned system and show that the problem becomes more ill-conditioned with increasingly dense and accurate observations. Finally, we confirm the theoretical results in an operational setting by giving experimental results from the Met Office variational system.
Resumo:
This paper describes the integration of constrained predictive control and computed-torque control, and its application on a six degree-of-freedom PUMA 560 manipulator arm. The real-time implementation was based on SIMULINK, with the predictive controller and the computed-torque control law implemented in the C programming language. The constrained predictive controller solved a quadratic programming problem at every sampling interval, which was as short as 10 ms, using a prediction horizon of 150 steps and an 18th order state space model.
Resumo:
The paper discusses ensemble behaviour in the Spiking Neuron Stochastic Diffusion Network, SNSDN, a novel network exploring biologically plausible information processing based on higher order temporal coding. SNSDN was proposed as an alternative solution to the binding problem [1]. SNSDN operation resembles Stochastic Diffusin on Search, SDS, a non-deterministic search algorithm able to rapidly locate the best instantiation of a target pattern within a noisy search space ([3], [5]). In SNSDN, relevant information is encoded in the length of interspike intervals. Although every neuron operates in its own time, ‘attention’ to a pattern in the search space results in self-synchronised activity of a large population of neurons. When multiple patterns are present in the search space, ‘switching of at- tention’ results in a change of the synchronous activity. The qualitative effect of attention on the synchronicity of spiking behaviour in both time and frequency domain will be discussed.
Resumo:
An experimental and theoretical comparison is made of force control performance with different types of innerloop joint servoing techniques. The problem of disturbance rejection and sensitivity to plant dynamics variations (robustness) is addressed. Position, velocity, strain gauge derived joint torque, and current servos are designed and implemented on a specially instrumented industrial robot, and the end-effector force feedback performances achieved are compared. Joint strain derived torque servoing is found to provide the best overall robust force control performance. Experimental results of the robust hard-on-hard contact achieved with the novel force controller implementation based on joint torque sensing are provided. Conclusions are drawn on the force control performance achievable on a geared robot given the joint servoing technique.
Resumo:
Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.
Resumo:
In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes.
Resumo:
In this paper the authors investigate the use of optimal control techniques for improving the efficiency of the power conversion system in a point absorber wave power device. A simple mathematical model of the system is developed and an optimal control strategy for power generation is determined. They describe an algorithm for solving the problem numerically, provided the incident wave force is given. The results show that the performance of the device is significantly improved with the handwidth of the response being widened by the control strategy.
Resumo:
The self-assembly in aqueous solution of PEG-peptide conjugates comprising a model amyloid peptide sequence FFKLVFF that contains the Ab(16–20) KLVFF motif is investigated. X-ray diffraction reveals different packing motifs dependent on PEG chain length. This is correlated to remarkable differences in self-assembled nanostructures. The control of strand registry points to a subtle interplay between aromatic stacking, electrostatic and amphiphilic interactions.
Resumo:
Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or ‘ad hoc’ goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention – self-affirmation (SA) – that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual–spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive– and social–psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours.
Resumo:
In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.
Resumo:
According to many modern economic theories, actions simply reflect an individual's preferences, whereas a psychological phenomenon called “cognitive dissonance” claims that actions can also create preference. Cognitive dissonance theory states that after making a difficult choice between two equally preferred items, the act of rejecting a favorite item induces an uncomfortable feeling (cognitive dissonance), which in turn motivates individuals to change their preferences to match their prior decision (i.e., reducing preference for rejected items). Recently, however, Chen and Risen [Chen K, Risen J (2010) J Pers Soc Psychol 99:573–594] pointed out a serious methodological problem, which casts a doubt on the very existence of this choice-induced preference change as studied over the past 50 y. Here, using a proper control condition and two measures of preferences (self-report and brain activity), we found that the mere act of making a choice can change self-report preference as well as its neural representation (i.e., striatum activity), thus providing strong evidence for choice-induced preference change. Furthermore, our data indicate that the anterior cingulate cortex and dorsolateral prefrontal cortex tracked the degree of cognitive dissonance on a trial-by-trial basis. Our findings provide important insights into the neural basis of how actions can alter an individual's preferences.
Resumo:
It is often necessary to selectively attend to important information, at the expense of less important information, especially if you know you cannot remember large amounts of information. The present study examined how younger and older adults select valuable information to study, when given unrestricted choices about how to allocate study time. Participants were shown a display of point values ranging from 1–30. Participants could choose which values to study, and the associated word was then shown. Study time, and the choice to restudy words, was under the participant's control during the 2-minute study session. Overall, both age groups selected high value words to study and studied these more than the lower value words. However, older adults allocated a disproportionately greater amount of study time to the higher-value words, and age-differences in recall were reduced or eliminated for the highest value words. In addition, older adults capitalized on recency effects in a strategic manner, by studying high-value items often but also immediately before the test. A multilevel mediation analysis indicated that participants strategically remembered items with higher point value, and older adults showed similar or even stronger strategic process that may help to compensate for poorer memory. These results demonstrate efficient (and different) metacognitive control operations in younger and older adults, which can allow for strategic regulation of study choices and allocation of study time when remembering important information. The findings are interpreted in terms of life span models of agenda-based regulation and discussed in terms of practical applications. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract)