214 resultados para Relaxation Measurements
Resumo:
The stress relaxation behaviour of two frozen sucrose solutions (7% and 19%) during indentation in the temperature range of -20C to -40C were investigated. The stress relaxation is similar to that of pure polycrystalline ice, which is controlled by steady-state creep. The steady state creep rate exponent, m, of 7% and 19% sucrose solutions lies between 2.3 and 3.6. The steady state creep rate constant, B, of 19% sucrose solution is greater than that of 7% sucrose solution. It is suggested that the steady-state creep rate exponent m depends on contributions from the proportions of favourably oriented grains, unfavourably oriented grains and grain boundaries to creep and that these components depend on the value of internal stress which is related to the hardness of samples at the different testing temperatures. The steady-state creep rate constant B depends on the mobility of dislocations in sucrose solutions which, in turn, depends on the temperature and the concentration of sucrose.
Resumo:
Relaxation behavior was measured for dough, gluten and gluten protein fractions obtained from the U.K. biscuitmaking flour, Riband, and the U.K. breadmaking flour, Hereward. The relaxation spectrum, in which relaxation times (tau) are related to polymer molecular size, for dough showed a broad molecular size distribution, with two relaxation processes: a major peak at short times and a second peak at times longer than 10 sec, which is thought to correspond to network structure, and which may be attributed to entanglements and physical cross-links of polymers. Relaxation spectra of glutens were similar to those for the corresponding doughs from both flours. Hereward gluten clearly showed a much more pronounced second peak in relaxation spectrum and higher relaxation modulus than Riband gluten at the same water content. In the gluten protein fractions, gliadin and acetic acid soluble glutenin only showed the first relaxation process, but gel protein clearly showed both the first and second relaxation processes. The results show that the relaxation properties of dough depend on its gluten protein and that gel protein is responsible for the network structure for dough and gluten.
Resumo:
The cyclin/cyclin-dependent kinase (Cdk) complexes and the Cdk inhibitors (CDKI) are crucial regulators of cell cycle progression in all eukaryotic cells. Using rat cardiac myocytes as a model system, this chapter provides a detailed account of methods that can be employed to measure both cyclin/Cdk activity in cells and the extent of CDKI inhibitory activity present in a particular cell type.
Resumo:
Purpose. Accommodation can mask hyperopia and reduce the accuracy of non-cycloplegic refraction. It is, therefore, important to minimize accommodation to obtain a measure of hyperopia as accurate as possible. To characterize the parameters required to measure the maximally hyperopic error using photorefraction, we used different target types and distances to determine which target was most likely to maximally relax accommodation and thus more accurately detect hyperopia in an individual. Methods. A PlusoptiX SO4 infra-red photorefractor was mounted in a remote haploscope which presented the targets. All participants were tested with targets at four fixation distances between 0.3 and 2 m containing all combinations of blur, disparity, and proximity/looming cues. Thirty-eight infants (6 to 44 weeks) were studied longitudinally, and 104 children [4 to 15 years (mean 6.4)] and 85 adults, with a range of refractive errors and binocular vision status, were tested once. Cycloplegic refraction data were available for a sub-set of 59 participants spread across the age range. Results. The maximally hyperopic refraction (MHR) found at any time in the session was most frequently found when fixating the most distant targets and those containing disparity and dynamic proximity/looming cues. Presence or absence of blur was less significant, and targets in which only single cues to depth were present were also less likely to produce MHR. MHR correlated closely with cycloplegic refraction (r = 0.93, mean difference 0.07 D, p = n.s., 95% confidence interval +/-<0.25 D) after correction by a calibration factor. Conclusions. Maximum relaxation of accommodation occurred for binocular targets receding into the distance. Proximal and disparity cues aid relaxation of accommodation to a greater extent than blur, and thus non-cycloplegic refraction targets should incorporate these cues. This is especially important in screening contexts with a brief opportunity to test for significant hyperopia. MHR in our laboratory was found to be a reliable estimation of cycloplegic refraction. (Optom Vis Sci 2009;86:1276-1286)
Resumo:
Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.
Resumo:
This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.
Resumo:
The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud
Resumo:
A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.
Resumo:
The success of Matrix-assisted laser desorption / ionisation (MALDI) in fields such as proteomics has partially but not exclusively been due to the development of improved data acquisition and sample preparation techniques. This has been required to overcome some of the short comings of the commonly used solid-state MALDI matrices such as - cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB). Solid state matrices form crystalline samples with highly inhomogeneous topography and morphology which results in large fluctuations in analyte signal intensity from spot to spot and positions within the spot. This means that efficient tuning of the mass spectrometer can be impeded and the use of MALDI MS for quantitative measurements is severely impeded. Recently new MALDI liquid matrices have been introduced which promise to be an effective alternative to crystalline matrices. Generally the liquid matrices comprise either ionic liquid matrices (ILMs) or a usually viscous liquid matrix which is doped with a UV lightabsorbing chromophore [1-3]. The advantages are that the droplet surface is smooth and relatively uniform with the analyte homogeneously distributed within. They have the ability to replenish a sampling position between shots negating the need to search for sample hot-spots. Also the liquid nature of the matrix allows for the use of additional additives to change the environment to which the analyte is added.
Resumo:
Tracer gas techniques have been the most appropriate experimental method of determining airflows and ventilation rates in houses. However, current trends to reduce greenhouse gas effects have prompted the need for alternative techniques, such as passive sampling. In this research passive sampling techniques have been used to demonstrate the potential to fulfil these requirements by using solutions of volatile organic compounds (VOCs) and solid phase microextraction (SPME) fibres. These passive sampling techniques have been calibrated against tracer gas decay techniques and measurements from a standard orifice plate. Two constant sources of volatile organic compounds were diffused into two sections of a humidity chamber and sampled using SPME fibres. From a total of four SPME fibres (two in each section), reproducible results were obtained. Emission rates and air movement from one section to the other were predicted using developed algorithms. Comparison of the SPME fibre technique with that of the tracer gas technique and measurements from an orifice plate showed similar results with good precision and accuracy. With these fibres, infiltration rates can be measured over grab samples in a time weighted averaged period lasting from 10 minutes up to several days. Key words: passive samplers, solid phase microextraction fibre, tracer gas techniques, airflow, air infiltration, houses.
Resumo:
An electrical current of the order one picoamp per metre squared flows vertically in the Earth's atmosphere, between the ionosphere at approximately 50km altitude and the surface. This current is generated by global thunderstorm activity and is modulated by galactic cosmic rays and atmospheric aerosol. In fair weather conditions, this current cause a vertical atmospheric electric field, commonly measured as a potential gradient. For circumstances other than fair weather conditions, the potential gradient varies, from small steady enhancements in fog to large fluctuations in thunderstorms. The atmospheric potential gradient is continuously monitored at the Reading University Atmospheric Observatory. An account of the variability of the potential gradient on a variety of time scales will be presented.
Resumo:
We have conducted the first extensive field test of two new methods to retrieve optical properties for overhead clouds that range from patchy to overcast. The methods use measurements of zenith radiance at 673 and 870 nm wavelengths and require the presence of green vegetation in the surrounding area. The test was conducted at the Atmospheric Radiation Measurement Program Oklahoma site during September–November 2004. These methods work because at 673 nm (red) and 870 nm (near infrared (NIR)), clouds have nearly identical optical properties, while vegetated surfaces reflect quite differently. The first method, dubbed REDvsNIR, retrieves not only cloud optical depth τ but also radiative cloud fraction. Because of the 1-s time resolution of our radiance measurements, we are able for the first time to capture changes in cloud optical properties at the natural timescale of cloud evolution. We compared values of τ retrieved by REDvsNIR to those retrieved from downward shortwave fluxes and from microwave brightness temperatures. The flux method generally underestimates τ relative to the REDvsNIR method. Even for overcast but inhomogeneous clouds, differences between REDvsNIR and the flux method can be as large as 50%. In addition, REDvsNIR agreed to better than 15% with the microwave method for both overcast and broken clouds. The second method, dubbed COUPLED, retrieves τ by combining zenith radiances with fluxes. While extra information from fluxes was expected to improve retrievals, this is not always the case. In general, however, the COUPLED and REDvsNIR methods retrieve τ to within 15% of each other.
Resumo:
The budgets of seven halogenated gases (CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CCl4 and SF6) are studied by comparing measurements in polar firn air from two Arctic and three Antarctic sites, and simulation results of two numerical models: a 2-D atmospheric chemistry model and a 1-D firn diffusion model. The first one is used to calculate atmospheric concentrations from emission trends based on industrial inventories; the calculated concentration trends are used by the second one to produce depth concentration profiles in the firn. The 2-D atmospheric model is validated in the boundary layer by comparison with atmospheric station measurements, and vertically for CFC-12 by comparison with balloon and FTIR measurements. Firn air measurements provide constraints on historical atmospheric concentrations over the last century. Age distributions in the firn are discussed using a Green function approach. Finally, our results are used as input to a radiative model in order to evaluate the radiative forcing of our target gases. Multi-species and multi-site firn air studies allow to better constrain atmospheric trends. The low concentrations of all studied gases at the bottom of the firn, and their consistency with our model results confirm that their natural sources are small. Our results indicate that the emissions, sinks and trends of CFC-11, CFC-12, CFC-113, CFC-115 and SF6 are well constrained, whereas it is not the case for CFC-114 and CCl4. Significant emission-dependent changes in the lifetimes of halocarbons destroyed in the stratosphere were obtained. Those result from the time needed for their transport from the surface where they are emitted to the stratosphere where they are destroyed. Efforts should be made to update and reduce the large uncertainties on CFC lifetimes.