85 resultados para Probabilistic Projections


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model simulations of the next few decades are widely used in assessments of climate change impacts and as guidance for adaptation. Their non-linear nature reveals a level of irreducible uncertainty which it is important to understand and quantify, especially for projections of near-term regional climate. Here we use large idealised initial condition ensembles of the FAMOUS global climate model with a 1 %/year compound increase in CO2 levels to quantify the range of future temperatures in model-based projections. These simulations explore the role of both atmospheric and oceanic initial conditions and are the largest such ensembles to date. Short-term simulated trends in global temperature are diverse, and cooling periods are more likely to be followed by larger warming rates. The spatial pattern of near-term temperature change varies considerably, but the proportion of the surface showing a warming is more consistent. In addition, ensemble spread in inter-annual temperature declines as the climate warms, especially in the North Atlantic. Over Europe, atmospheric initial condition uncertainty can, for certain ocean initial conditions, lead to 20 year trends in winter and summer in which every location can exhibit either strong cooling or rapid warming. However, the details of the distribution are highly sensitive to the ocean initial condition chosen and particularly the state of the Atlantic meridional overturning circulation. On longer timescales, the warming signal becomes more clear and consistent amongst different initial condition ensembles. An ensemble using a range of different oceanic initial conditions produces a larger spread in temperature trends than ensembles using a single ocean initial condition for all lead times. This highlights the potential benefits from initialising climate predictions from ocean states informed by observations. These results suggest that climate projections need to be performed with many more ensemble members than at present, using a range of ocean initial conditions, if the uncertainty in near-term regional climate is to be adequately quantified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current state-of-the-art global climate models produce different values for Earth’s mean temperature. When comparing simulations with each other and with observations it is standard practice to compare temperature anomalies with respect to a reference period. It is not always appreciated that the choice of reference period can affect conclusions, both about the skill of simulations of past climate, and about the magnitude of expected future changes in climate. For example, observed global temperatures over the past decade are towards the lower end of the range of CMIP5 simulations irrespective of what reference period is used, but exactly where they lie in the model distribution varies with the choice of reference period. Additionally, we demonstrate that projections of when particular temperature levels are reached, for example 2K above ‘pre-industrial’, change by up to a decade depending on the choice of reference period. In this article we discuss some of the key issues that arise when using anomalies relative to a reference period to generate climate projections. We highlight that there is no perfect choice of reference period. When evaluating models against observations, a long reference period should generally be used, but how long depends on the quality of the observations available. The IPCC AR5 choice to use a 1986-2005 reference period for future global temperature projections was reasonable, but a case-by-case approach is needed for different purposes and when assessing projections of different climate variables. Finally, we recommend that any studies that involve the use of a reference period should explicitly examine the robustness of the conclusions to alternative choices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961–2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño–Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural differences among models account for much of the uncertainty in projected climate changes, at least until the mid-twenty-first century. Recent observations encompass too limited a range of climate variability to provide a robust test of the ability to simulate climate changes. Past climate changes provide a unique opportunity for out-of-sample evaluation of model performance. Palaeo-evaluation has shown that the large-scale changes seen in twenty-first-century projections, including enhanced land–sea temperature contrast, latitudinal amplification, changes in temperature seasonality and scaling of precipitation with temperature, are likely to be realistic. Although models generally simulate changes in large-scale circulation sufficiently well to shift regional climates in the right direction, they often do not predict the correct magnitude of these changes. Differences in performance are only weakly related to modern-day biases or climate sensitivity, and more sophisticated models are not better at simulating climate changes. Although models correctly capture the broad patterns of climate change, improvements are required to produce reliable regional projections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The weak-constraint inverse for nonlinear dynamical models is discussed and derived in terms of a probabilistic formulation. The well-known result that for Gaussian error statistics the minimum of the weak-constraint inverse is equal to the maximum-likelihood estimate is rederived. Then several methods based on ensemble statistics that can be used to find the smoother (as opposed to the filter) solution are introduced and compared to traditional methods. A strong point of the new methods is that they avoid the integration of adjoint equations, which is a complex task for real oceanographic or atmospheric applications. they also avoid iterative searches in a Hilbert space, and error estimates can be obtained without much additional computational effort. the feasibility of the new methods is illustrated in a two-layer quasigeostrophic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional climate modelling was used to produce high resolution climate projections for Africa, under a “business as usual scenario”, that were translated into potential health impacts utilizing a heat index that relates apparent temperature to health impacts. The continent is projected to see increases in the number of days when health may be adversely affected by increasing maximum apparent temperatures (AT) due to climate change. Additionally, climate projections indicate that the increases in AT results in a moving of days from the less severe to the more severe Symptom Bands. The analysis of the rate of increasing temperatures assisted in identifying areas, such as the East African highlands, where health may be at increasing risk due to both large increases in the absolute number of hot days, and due to the high rate of increase. The projections described here can be used by health stakeholders in Africa to assist in the development of appropriate public health interventions to mitigate the potential health impacts from climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a selection of methodologies for using the palaeo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to attempt to constrain future climate projections using the same models. The constraints arise from measures of skill in hindcasting palaeo-climate changes from the present over three periods: the Last Glacial Maximum (LGM) (21 000 yr before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (850–1850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of palaeo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitation/temperature or sea ice extent to indicate that models that produce the best agreement with palaeo-climate information give demonstrably different future results than the rest of the models. We also explore cases where comparisons are strongly dependent on uncertain forcing time series or show important non-stationarity, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the palaeo-climate simulations to help inform the future projections and urge all the modelling groups to complete this subset of the CMIP5 runs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precipitation over western Europe (WE) is projected to increase (decrease) roughly northward (equatorward) of 50°N during the 21st century. These changes are generally attributed to alterations in the regional large-scale circulation, e.g., jet stream, cyclone activity, and blocking frequencies. A novel weather typing within the sector (30°W–10°E, 25–70°N) is used for a more comprehensive dynamical interpretation of precipitation changes. A k-means clustering on daily mean sea level pressure was undertaken for ERA-Interim reanalysis (1979–2014). Eight weather types are identified: S1, S2, S3 (summertime types), W1, W2, W3 (wintertime types), B1, and B2 (blocking-like types). Their distinctive dynamical characteristics allow identifying the main large-scale precipitation-driving mechanisms. Simulations with 22 Coupled Model Intercomparison Project 5 models for recent climate conditions show biases in reproducing the observed seasonality of weather types. In particular, an overestimation of weather type frequencies associated with zonal airflow is identified. Considering projections following the (Representative Concentration Pathways) RCP8.5 scenario over 2071–2100, the frequencies of the three driest types (S1, B2, and W3) are projected to increase (mainly S1, +4%) in detriment of the rainiest types, particularly W1 (−3%). These changes explain most of the precipitation projections over WE. However, a weather type-independent background signal is identified (increase/decrease in precipitation over northern/southern WE), suggesting modifications in precipitation-generating processes and/or model inability to accurately simulate these processes. Despite these caveats in the precipitation scenarios for WE, which must be duly taken into account, our approach permits a better understanding of the projected trends for precipitation over WE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate forecastuncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty to transform the probability of occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the topic of flood protection mitigation, called “How much are you prepared to pay for a forecast?”. The game was played at several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydrometeorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants’ willingness-to-pay for a forecast, the results of the game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers.