83 resultados para Peacock, Wayne


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis and characterization of a healable, elastomeric shape recovery supramolecular polyurethane whose properties result from self-complementary π−π stacking and hydrogen bonding interactions plus phase separation. ESEM analysis and photographic images have revealed that this material can heal at 45 °C in 15 min to recover the mechanical properties of the pristine material with healing efficiencies >99%. This supramolecular polyurethane is also able to recover an applied strain of 25% within 5 min of release of the load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A supramolecular polymer based upon two complementary polymer components is formed by sequential deposition from solution in THF, using a piezoelectric drop-on-demand inkjet printer. Highly efficient cycloaddition or ‘click’ chemistry afforded a well-defined poly(ethylene glycol) featuring chain-folding diimide end groups, which possesses greatly enhanced solubility in THF relative to earlier materials featuring random diimide sequences. Blending the new polyimide with a complementary poly(ethylene glycol) system bearing pyrene end groups (which bind to the chain-folding diimide units) overcomes the limited solubility encountered previously with chain-folding polyimides in inkjet printing applications. The solution state properties of the resulting polymer blend were assessed via viscometry to confirm the presence of a supramolecular polymer before depositing the two electronically complementary polymers by inkjet printing techniques. The novel materials so produced offer an insight into ways of controlling the properties of printed materials through tuning the structure of the polymer at the (supra)molecular level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Model intercomparisons have identified important deficits in the representation of the stable boundary layer by turbulence parametrizations used in current weather and climate models. However, detrimental impacts of more realistic schemes on the large-scale flow have hindered progress in this area. Here we implement a total turbulent energy scheme into the climate model ECHAM6. The total turbulent energy scheme considers the effects of Earth’s rotation and static stability on the turbulence length scale. In contrast to the previously used turbulence scheme, the TTE scheme also implicitly represents entrainment flux in a dry convective boundary layer. Reducing the previously exaggerated surface drag in stable boundary layers indeed causes an increase in southern hemispheric zonal winds and large-scale pressure gradients beyond observed values. These biases can be largely removed by increasing the parametrized orographic drag. Reducing the neutral limit turbulent Prandtl number warms and moistens low-latitude boundary layers and acts to reduce longstanding radiation biases in the stratocumulus regions, the Southern Ocean and the equatorial cold tongue that are common to many climate models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of carbamate functionalized 1,4-disubstituted triazoles featuring a base sensitive trigger residue, plus a model aromatic amine reporter group, were prepared via copper(I) catalysed azide–alkyne cycloaddition and evaluated for their self-immolative characteristics. This study revealed a clear structure–reactivity relationship, via Hammett analysis, between the structure of the 1,4-disubstituted triazole and the rate of self-immolative release of the amine reporter group, thus demonstrating that under basic conditions this type of triazole derivative has the potential to be employed in a range of chemical release systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In ovariectomized rats, administration of estradiol, or selective estrogen receptor agonists that activate either the alpha or beta isoforms, have been shown to enhance spatial cognition on a variety of learning and memory tasks, including those that capitalize on the preference of rats to seek out novelty. Although the effects of the putative estrogen G-protein-coupled receptor 30 (GPR30) on hippocampus-based tasks have been reported using food-motivated tasks, the effects of activation of GPR30 receptors on tasks that depend on the preference of rats to seek out spatial novelty remain to be determined. Therefore, the aim of the current study was to determine if short-term treatment of ovariectomized rats with G-1, an agonist for GPR30, would mimic the effects on spatial recognition memory observed following short-term estradiol treatment. In Experiment 1, ovariectomized rats treated with a low dose (1mug) of estradiol 48h and 24h prior to the information trial of a Y-maze task exhibited a preference for the arm associated with the novel environment on the retention trial conducted 48h later. In Experiment 2, treatment of ovariectomized rats with G-1 (25mug) 48h and 24h prior to the information trial of a Y-maze task resulted in a greater preference for the arm associated with the novel environment on the retention trial. Collectively, the results indicated that short-term treatment of ovariectomized rats with a GPR30 agonist was sufficient to enhance spatial recognition memory, an effect that also occurred following short-term treatment with a low dose of estradiol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report the synthesis and healing ability of a non-cytotoxic supramolecular polyurethane network whose mechanical properties can be recovered efficiently (> 99%) at the temperature of the human body (37 ºC). Rheological analysis revealed an acceleration in the drop of the storage modulus above 37 ºC, on account of the dissociation of the supramolecular polyurethane network, and this decrease in viscosity enables the efficient recovery of the mechanical properties. Microscopic and mechanical characterisation has shown that this material is able to recover mechanical properties across a damage site with minimal contact required between the interfaces and also demonstrated that the mechanical properties improved when compared to other low temperature healing elastomers or gel-like materials. The supramolecular polyurethane was found to be non-toxic in a cytotoxicity assay carried out in human skin fibroblasts (cell viability > 94% and non-significantly different compared to the untreated control). This supramolecular network material also exhibited excellent adhesion to pig skin and could be healed completely in situ post damage indicating that biomedical applications could be targeted, such as artificial skin or wound dressings with supramolecular materials of this type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supramolecular polyurethanes (SPUs) possess thermoresponsive and thermoreversible properties, and those characteristics are highly desirable in both bulk commodity and value-added applications such as adhesives, shape-memory materials, healable coatings and lightweight, impact-resistant structures (e.g. protection for mobile electronics). A better understanding of the mechanical properties, especially the rate and temperature sensitivity, of these materials are required to assess their suitability for different applications. In this paper, a newly developed SPU with tuneable thermal properties was studied, and the response of this SPU to compressive loading over strain rates from 10−3 to 104 s−1 was presented. Furthermore, the effect of temperature on the mechanical response was also demonstrated. The sample was tested using an Instron mechanical testing machine for quasi-static loading, a home-made hydraulic system for moderate rates and a traditional split Hopkinson pressure bars (SHPBs) for high strain rates. Results showed that the compression stress-strain behaviour was affected significantly by the thermoresponsive nature of SPU, but that, as expected for polymeric materials, the general trends of the temperature and the rate dependence mirror each other. However, this behaviour is more complicated than observed for many other polymeric materials, as a result of the richer range of transitions that influence the behaviour over the range of temperatures and strain rates tested.