80 resultados para Parallel and distributed systems
Resumo:
Many communication signal processing applications involve modelling and inverting complex-valued (CV) Hammerstein systems. We develops a new CV B-spline neural network approach for efficient identification of the CV Hammerstein system and effective inversion of the estimated CV Hammerstein model. Specifically, the CV nonlinear static function in the Hammerstein system is represented using the tensor product from two univariate B-spline neural networks. An efficient alternating least squares estimation method is adopted for identifying the CV linear dynamic model’s coefficients and the CV B-spline neural network’s weights, which yields the closed-form solutions for both the linear dynamic model’s coefficients and the B-spline neural network’s weights, and this estimation process is guaranteed to converge very fast to a unique minimum solution. Furthermore, an accurate inversion of the CV Hammerstein system can readily be obtained using the estimated model. In particular, the inversion of the CV nonlinear static function in the Hammerstein system can be calculated effectively using a Gaussian-Newton algorithm, which naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. The effectiveness of our approach is demonstrated using the application to equalisation of Hammerstein channels.
Resumo:
This study compared fat and fatty acids in cooked retail chicken meat from conventional and organic systems. Fat contents were 1.7, 5.2, 7.1 and 12.9 g/100 g cooked weight in skinless breast, breast with skin, skinless leg and leg with skin respectively, with organic meat containing less fat overall (P < 0.01). Meat was rich in cis-monounsaturated fatty acids, although organic meat contained less than did conventional meat (1850 vs. 2538 mg/100 g; P < 0.001). Organic meat was also lower (P < 0.001) in 18:3 n−3 (115 vs. 180 mg/100 g) and, whilst it contained more (P < 0.001) docosahexaenoic acid (30.9 vs. 13.7 mg/100 g), this was due to the large effect of one supermarket. This system by supermarket interaction suggests that poultry meat labelled as organic is not a guarantee of higher long chain n−3 fatty acids. Overall there were few major differences in fatty acid contents/profiles between organic and conventional meat that were consistent across all supermarkets.
Resumo:
There is increasing concern that the intensification of dairy production reduces the concentrations of nutritionally desirable compounds in milk. This study therefore compared important quality parameters (protein and fatty acid profiles; α-tocopherol and carotenoid concentrations) in milk from four dairy systems with contrasting production intensities (in terms of feeding regimens and milking systems). The concentrations of several nutritionally desirable compounds (β-lactoglobulin, omega-3 fatty acids, omega-3/omega-6 ratio, conjugated linoleic acid c9t11, and/or carotenoids) decreased with increasing feeding intensity (organic outdoor ≥ conventional outdoor ≥ conventional indoors). Milking system intensification (use of robotic milking parlors) had a more limited effect on milk composition, but increased mastitis incidence. Multivariate analyses indicated that differences in milk quality were mainly linked to contrasting feeding regimens and that milking system and breed choice also contributed to differences in milk composition between production systems.
Resumo:
An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.