123 resultados para Ore deposits Remote-sensing maps
Resumo:
The Global Ocean Data Assimilation Experiment (GODAE [http:// www.godae.org]) has spanned a decade of rapid technological development. The ever-increasing volume and diversity of oceanographic data produced by in situ instruments, remote-sensing platforms, and computer simulations have driven the development of a number of innovative technologies that are essential for connecting scientists with the data that they need. This paper gives an overview of the technologies that have been developed and applied in the course of GODAE, which now provide users of oceanographic data with the capability to discover, evaluate, visualize, download, and analyze data from all over the world. The key to this capability is the ability to reduce the inherent complexity of oceanographic data by providing a consistent, harmonized view of the various data products. The challenges of data serving have been addressed over the last 10 years through the cooperative skills and energies of many individuals.
Resumo:
As part of its Data User Element programme, the European Space Agency funded the GlobMODEL project which aimed at investigating the scientific, technical, and organizational issues associated with the use and exploitation of remotely-sensed observations, particularly from new sounders. A pilot study was performed as a "demonstrator" of the GlobMODEL idea, based on the use of new data, with a strong European heritage, not yet assimilated operationally. Two parallel assimilation experiments were performed, using either total column ozone or ozone profiles retrieved at the Royal Netherlands Meteorological Institute (KNMI) from the Ozone Monitoring Instrument (OMI). In both cases, the impact of assimilating OMI data in addition to the total ozone columns from the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) on the European Centre for Medium Range Weather Forecasts (ECMWF) ozone analyses was assessed by means of independent measurements. We found that the impact of OMI total columns is mainly limited to the region between 20 and 80 hPa, and is particularly important at high latitudes in the Southern hemisphere where the stratospheric ozone transport and chemical depletion are generally difficult to model with accuracy. Furthermore, the assimilation experiments carried out in this work suggest that OMI DOAS (Differential Optical Absorption Spectroscopy) total ozone columns are on average larger than SCIAMACHY total columns by up to 3 DU, while OMI total columns derived from OMI ozone profiles are on average about 8 DU larger than SCIAMACHY total columns. At the same time, the demonstrator brought to light a number of issues related to the assimilation of atmospheric composition profiles, such as the shortcomings arising when the vertical resolution of the instrument is not properly accounted for in the assimilation. The GlobMODEL demonstrator accelerated scientific and operational utilization of new observations and its results - prompted ECMWF to start the operational assimilation of OMI total column ozone data.
Resumo:
This paper applies multispectral remote sensing techniques to map the Fe-oxide content over the entire Namib sand sea. Spectrometric analysis is applied to field samples to identify the reflectance properties of the dune sands which enable remotely sensed Fe-oxide mapping. The results indicate that the pattern of dune colour in the Namib sand sea arises from the mixing of at least two distinct sources of sand; a red component of high Fe-oxide content (present as a coating on the sand grains) which derives from the inland regions, particularly from major embayments into the Southern African escarpment; and a yellow coastal component of low Fe-oxide content which is brought into the area by northward-moving aeolian transport processes. These major provenances are separated by a mixing zone between 20 kin and 90 kin from the coast throughout the entire length of the sand sea. Previous workers have also recognised a third, fluvial, provenance, but the methodology applied here is not able to map this source as a distinct spectral component. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
ATSR-2 active fire data from 1996 to 2000, TRMM VIRS fire counts from 1998 to 2000 and burn scars derived from SPOT VEGETATION ( the Global Burnt Area 2000 product) were mapped for Peru and Bolivia to analyse the spatial distribution of burning and its intra- and inter-annual variability. The fire season in the region mainly occurs between May and October; though some variation was found between the six broad habitat types analysed: desert, grassland, savanna, dry forest, moist forest and yungas (the forested valleys on the eastern slope of the Andes). Increased levels of burning were generally recorded in ATSR-2 and TRMM VIRS fire data in response to the 1997/1998 El Nino, but in some areas the El Nino effect was masked by the more marked influences of socio-economic change on land use and land cover. There were differences between the three global datasets: ATSR-2 under-recorded fires in ecosystems with low net primary productivities. This was because fires are set during the day in this region and, when fuel loads are low, burn out before the ATSR-2 overpass in the region which is between 02.45 h and 03.30 h. TRMM VIRS was able to detect these fires because its overpasses cover the entire diurnal range on a monthly basis. The GBA2000 product has significant errors of commission (particularly areas of shadow in the well-dissected eastern Andes) and omission (in the agricultural zone around Santa Cruz, Bolivia and in north-west Peru). Particular attention was paid to biomass burning in high-altitude grasslands, where fire is an important pastoral management technique. Fires and burn scars from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) data for a range of years between 1987 and 2000 were mapped for areas around Parque Nacional Rio Abiseo (Peru) and Parque Nacional Carrasco (Bolivia). Burn scars mapped in the grasslands of these two areas indicate far more burning had taken place than either the fires or the burn scars derived from global datasets. Mean scar sizes are smaller and have a smaller range in size between years the in the study area in Peru (6.6-7.1 ha) than Bolivia (16.9-162.5 ha). Trends in biomass burning in the two highland areas can be explained in terms of the changing socio-economic environments and impacts of conservation. The mismatch between the spatial scale of biomass burning in the high-altitude grasslands and the sensors used to derive global fire products means that an entire component of the fire regime in the region studied is omitted, despite its importance in the farming systems on the Andes.
Resumo:
A simple formulation relating the L-band microwave brightness temperature detected by a passive microwave radiometer to the near surface soil moisture was developed using MICRO-SWEAT, a coupled microwave emission model and soil-vegetation-atmosphere-transfer (SVAT) scheme. This simple model provides an ideal tool with which to explore the impact of sub-pixel heterogeneity on the retrieval of soil moisture from microwave brightness temperatures. In the case of a bare soil pixel, the relationship between apparent emissivity and surface soil moisture is approximately linear, with the clay content of the soil influencing just the intercept of this relationship. It is shown that there are no errors in the retrieved soil moisture from a bare soil pixel that is heterogeneous in soil moisture and texture. However, in the case of a vegetated pixel, the slope of the relationship between apparent emissivity and surface soil moisture decreases with increasing vegetation. Therefore for a pixel that is heterogeneous in vegetation and soil moisture, errors can be introduced into the retrieved soil moisture. Generally, under moderate conditions, the retrieved soil moisture is within 3% of the actual soil moisture. Examples illustrating this discussion use data collected during the Southern Great Plains '97 Experiment (SGP97).
Resumo:
Synthetic aperture radar (SAR) data have proved useful in remote sensing studies of deserts, enabling different surfaces to be discriminated by differences in roughness properties. Roughness is characterized in SAR backscatter models using the standard deviation of surface heights (sigma), correlation length (L) and autocorrelation function (rho(xi)). Previous research has suggested that these parameters are of limited use for characterizing surface roughness, and are often unreliable due to the collection of too few roughness profiles, or under-sampling in terms of resolution or profile length (L-p). This paper reports on work aimed at establishing the effects of L-p and sampling resolution on SAR backscatter estimations and site discrimination. Results indicate significant relationships between the average roughness parameters and L-p, but large variability in roughness parameters prevents any clear understanding of these relationships. Integral equation model simulations demonstrate limited change with L-p and under-estimate backscatter relative to SAR observations. However, modelled and observed backscatter conform in pattern and magnitude for C-band systems but not for L-band data. Variation in surface roughness alone does not explain variability in site discrimination. Other factors (possibly sub-surface scattering) appear to play a significant role in controlling backscatter characteristics at lower frequencies.
Resumo:
Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In a recent investigation, Landsat TM and ETM+ data were used to simulate different resolutions of remotely-sensed images (from 30 to 1100 m) and to analyze the effect of resolution on a range of landscape metrics associated with spatial patterns of forest fragmentation in Chapare, Bolivia since the mid-1980s. Whereas most metrics were found to be highly dependent on pixel size, several fractal metrics (DLFD, MPFD, and AWMPFD) were apparently independent of image resolution, in contradiction with a sizeable body of literature indicating that fractal dimensions of natural objects depend strongly on image characteristics. The present re-analysis of the Chapare images, using two alternative algorithms routinely used for the evaluation of fractal dimensions, shows that the values of the box-counting and information fractal dimensions are systematically larger, sometimes by as much as 85%, than the "fractal" indices DLFD, MPFD, and AWMFD for the same images. In addition, the geometrical fractal features of the forest and non-forest patches in the Chapare region strongly depend on the resolution of images used in the analysis. The largest dependency on resolution occurs for the box-counting fractal dimension in the case of the non-forest patches in 1993, where the difference between the 30 and I 100 m-resolution images corresponds to 24% of the full theoretical range (1.0 to 2.0) of the mass fractal dimension. The observation that the indices DLFD, MPFD, and AWMPFD, unlike the classical fractal dimensions, appear relatively unaffected by resolution in the case of the Chapare images seems due essentially to the fact that these indices are based on a heuristic, "non-geometric" approach to fractals. Because of their lack of a foundation in fractal geometry, nothing guarantees that these indices will be resolution-independent in general. (C) 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
Resumo:
The resolution of remotely sensed data is becoming increasingly fine, and there are now many sources of data with a pixel size of 1 m x 1 m. This produces huge amounts of data that have to be stored, processed and transmitted. For environmental applications this resolution possibly provides far more data than are needed: data overload. This poses the question: how much is too much? We have explored two resolutions of data-20 in pixel SPOT data and I in pixel Computerized Airborne Multispectral Imaging System (CAMIS) data from Fort A. P. Hill (Virginia, USA), using the variogram of geostatistics. For both we used the normalized difference vegetation index (NDVI). Three scales of spatial variation were identified in both the SPOT and 1 in data: there was some overlap at the intermediate spatial scales of about 150 in and of 500 m-600 in. We subsampled the I in data and scales of variation of about 30 in and of 300 in were identified consistently until the separation between pixel centroids was 15 in (or 1 in 225pixels). At this stage, spatial scales of about 100m and 600m were described, which suggested that only now was there a real difference in the amount of spatial information available from an environmental perspective. These latter were similar spatial scales to those identified from the SPOT image. We have also analysed I in CAMIS data from Fort Story (Virginia, USA) for comparison and the outcome is similar.:From these analyses it seems that a pixel size of 20m is adequate for many environmental applications, and that if more detail is required the higher resolution data could be sub-sampled to a 10m separation between pixel centroids without any serious loss of information. This reduces significantly the amount of data that needs to be stored, transmitted and analysed and has important implications for data compression.
Resumo:
This paper applies multispectral remote sensing techniques to map the Fe-oxide content over the entire Namib sand sea. Spectrometric analysis is applied to field samples to identify the reflectance properties of the dune sands which enable remotely sensed Fe-oxide mapping. The results indicate that the pattern of dune colour in the Namib sand sea arises from the mixing of at least two distinct sources of sand; a red component of high Fe-oxide content (present as a coating on the sand grains) which derives from the inland regions, particularly from major embayments into the Southern African escarpment; and a yellow coastal component of low Fe-oxide content which is brought into the area by northward-moving aeolian transport processes. These major provenances are separated by a mixing zone between 20 kin and 90 kin from the coast throughout the entire length of the sand sea. Previous workers have also recognised a third, fluvial, provenance, but the methodology applied here is not able to map this source as a distinct spectral component. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Climate variability in the African Soudano-Sahel savanna zone has attracted much attention because of the persistence of anomalously low rainfall. Past efforts to monitor the climate of this region have focused on rainfall and vegetation conditions, while land surface temperature (LST) has received less attention. Remote sensing of LST is feasible and possible at global scale. Most remotely sensed estimates of LST are based on the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) that are limited in their ability to capture the full diurnal cycle. Although more frequent observations are available from past geostationary satellites, their spatial resolution is coarser than that of polar orbiting satellites. In this study, the improved capabilities of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the METEOSAT Second Generation (MSG) instrument are used to remotely sense the LST in the African Soudano-Sahel savanna zone at a resolution of 3 km and 15 minutes. In support of the Radiative Atmospheric Divergence using the ARM Mobile Facility (AMF), GERB and AMMA Stations (RADAGAST) project, African Monsoon Multidisciplinary Analyses (AMMA) project and the Department of Energy's Atmospheric Radiation Measurement (ARM) program, the ARM Mobile Facility was deployed during 2006 in this climatically sensitive region, thereby providing a unique opportunity to evaluate remotely sensed algorithms for deriving LST.
Resumo:
The ground surface net solar radiation is the energy that drives physical and chemical processes at the ground surface. In this paper, multi-spectral data from the Landsat-5 TM, topographic data from a gridded digital elevation model, field measurements, and the atmosphere model LOWTRAN 7 are used to estimate surface net solar radiation over the FIFE site. Firstly an improved method is presented and used for calculating total surface incoming radiation. Then, surface albedo is integrated from surface reflectance factors derived from remotely sensed data from Landsat-5 TM. Finally, surface net solar radiation is calculated by subtracting surface upwelling radiation from the total surface incoming radiation.