132 resultados para Ordinary Least Squares


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose – While Freeman's stakeholder management approach has attracted much attention from both scholars and practitioners, little empirical work has considered the interconnectedness of organisational perspectives and stakeholder perspectives. The purpose of this paper is to respond to this gap by developing and empirically testing a bi-directional model of organisation/stakeholder relationships. Design/methodology/approach – A conceptual framework is developed that integrates how stakeholders are affected by organisations with how they affect organisations. Quantitative data relating to both sides of the relationship are obtained from 700 customers of a European service organisation and analysed using partial least squares structural equation modelling technique. Findings – The findings provide empirical support for the notion of mutual dependency between organisations and stakeholders as advocated by stakeholder theorists. The results suggest that the way stakeholders relate to organisations is dependent on how organisations relate to stakeholders. Originality/value – The study is original on two fronts: first, it provides a framework and process that can be used by researchers to model bi-directional research with other stakeholder groups and in different contexts. Second, the study presents an example application of bi-directional research by empirically linking organisational and stakeholder expectations in the case of customers of a UK service organisation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a unique two-stage image restoration framework especially for further application of a novel rectangular poor-pixels detector, which, with properties of miniature size, light weight and low power consumption, has great value in the micro vision system. To meet the demand of fast processing, only a few measured images shifted up to subpixel level are needed to join the fusion operation, fewer than those required in traditional approaches. By maximum likelihood estimation with a least squares method, a preliminary restored image is linearly interpolated. After noise removal via Canny operator based level set evolution, the final high-quality restored image is achieved. Experimental results demonstrate effectiveness of the proposed framework. It is a sensible step towards subsequent image understanding and object identification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper employs a state space system description to provide a pole placement scheme via state feedback. It is shown that when a recursive least squares estimation scheme is used, the feedback employed can be expressed simply in terms of the estimated system parameters. To complement the state feedback approach, a method employing both state feedback and linear output feedback is discussed. Both methods arc then compared with the previous output polynomial type feedback schemes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the use of a discrete-time deadbeat control action on systems affected by noise. Variations on the standard controller form are discussed and comparisons are made with controllers in which noise rejection is a higher priority objective. Both load and random disturbances are considered in the system description, although the aim of the deadbeat design remains as a tailoring of reference input variations. Finally, the use of such a deadbeat action within a self-tuning control framework is shown to satisfy, under certain conditions, the self-tuning property, generally though only when an extended form of least-squares estimation is incorporated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scaling of metabolic rates to body size is widely considered to be of great biological and ecological importance, and much attention has been devoted to determining its theoretical and empirical value. Most debate centers on whether the underlying power law describing metabolic rates is 2/3 (as predicted by scaling of surface area/volume relationships) or 3/4 ("Kleiber's law"). Although recent evidence suggests that empirically derived exponents vary among clades with radically different metabolic strategies, such as ectotherms and endotherms, models, such as the metabolic theory of ecology, depend on the assumption that there is at least a predominant, if not universal, metabolic scaling exponent. Most analyses claimed to support the predictions of general models, however, failed to control for phylogeny. We used phylogenetic generalized least-squares models to estimate allometric slopes for both basal metabolic rate (BMR) and field metabolic rate (FMR) in mammals. Metabolic rate scaling conformed to no single theoretical prediction, but varied significantly among phylogenetic lineages. In some lineages we found a 3/4 exponent, in others a 2/3 exponent, and in yet others exponents differed significantly from both theoretical values. Analysis of the phylogenetic signal in the data indicated that the assumptions of neither species-level analysis nor independent contrasts were met. Analyses that assumed no phylogenetic signal in the data (species-level analysis) or a strong phylogenetic signal (independent contrasts), therefore, returned estimates of allometric slopes that were erroneous in 30% and 50% of cases, respectively. Hence, quantitative estimation of the phylogenetic signal is essential for determining scaling exponents. The lack of evidence for a predominant scaling exponent in these analyses suggests that general models of metabolic scaling, and macro-ecological theories that depend on them, have little explanatory power.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new parameter-estimation algorithm, which minimises the cross-validated prediction error for linear-in-the-parameter models, is proposed, based on stacked regression and an evolutionary algorithm. It is initially shown that cross-validation is very important for prediction in linear-in-the-parameter models using a criterion called the mean dispersion error (MDE). Stacked regression, which can be regarded as a sophisticated type of cross-validation, is then introduced based on an evolutionary algorithm, to produce a new parameter-estimation algorithm, which preserves the parsimony of a concise model structure that is determined using the forward orthogonal least-squares (OLS) algorithm. The PRESS prediction errors are used for cross-validation, and the sunspot and Canadian lynx time series are used to demonstrate the new algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new structure of Radial Basis Function (RBF) neural network called the Dual-orthogonal RBF Network (DRBF) is introduced for nonlinear time series prediction. The hidden nodes of a conventional RBF network compare the Euclidean distance between the network input vector and the centres, and the node responses are radially symmetrical. But in time series prediction where the system input vectors are lagged system outputs, which are usually highly correlated, the Euclidean distance measure may not be appropriate. The DRBF network modifies the distance metric by introducing a classification function which is based on the estimation data set. Training the DRBF networks consists of two stages. Learning the classification related basis functions and the important input nodes, followed by selecting the regressors and learning the weights of the hidden nodes. In both cases, a forward Orthogonal Least Squares (OLS) selection procedure is applied, initially to select the important input nodes and then to select the important centres. Simulation results of single-step and multi-step ahead predictions over a test data set are included to demonstrate the effectiveness of the new approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modelling of a nonlinear stochastic dynamical processes from data involves solving the problems of data gathering, preprocessing, model architecture selection, learning or adaptation, parametric evaluation and model validation. For a given model architecture such as associative memory networks, a common problem in non-linear modelling is the problem of "the curse of dimensionality". A series of complementary data based constructive identification schemes, mainly based on but not limited to an operating point dependent fuzzy models, are introduced in this paper with the aim to overcome the curse of dimensionality. These include (i) a mixture of experts algorithm based on a forward constrained regression algorithm; (ii) an inherent parsimonious delaunay input space partition based piecewise local lineal modelling concept; (iii) a neurofuzzy model constructive approach based on forward orthogonal least squares and optimal experimental design and finally (iv) the neurofuzzy model construction algorithm based on basis functions that are Bézier Bernstein polynomial functions and the additive decomposition. Illustrative examples demonstrate their applicability, showing that the final major hurdle in data based modelling has almost been removed.