114 resultados para Optimal Feedback Control
Resumo:
One of the major aims of BCI research is devoted to achieving faster and more efficient control of external devices. The identification of individual tap events in a motor imagery BCI is therefore a desirable goal. EEG is recorded from subjects performing and imagining finger taps with their left and right hands. A Differential Evolution based feature selection wrapper is used in order to identify optimal features in the spatial and frequency domains for tap identification. Channel-frequency band combinations are found which allow differentiation of tap vs. no-tap control conditions for executed and imagined taps. Left vs. right hand taps may also be differentiated with features found in this manner. A sliding time window is then used to accurately identify individual taps in the executed tap and imagined tap conditions. Highly statistically significant classification accuracies are achieved with time windows of 0.5 s and more allowing taps to be identified on a single trial basis.
Resumo:
A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.
Resumo:
A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.
Resumo:
A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.
Resumo:
Variations on the standard Kohonen feature map can enable an ordering of the map state space by using only a limited subset of the complete input vector. Also it is possible to employ merely a local adaptation procedure to order the map, rather than having to rely on global variables and objectives. Such variations have been included as part of a hybrid learning system (HLS) which has arisen out of a genetic-based classifier system. In the paper a description of the modified feature map is given, which constitutes the HLSs long term memory, and results in the control of a simple maze running task are presented, thereby demonstrating the value of goal related feedback within the overall network.
Resumo:
Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.
Resumo:
This paper is concerned with the design of robust feedback H~-control systems for the control of the upright posture of paraplegic persons standing. While the subject stands in a special apparatus, stabilising torque at the ankle joint is generated by electrical stimulation of the paralyzed calf muscles. Since the muscles acting as actuators in this setup show a significant degree of nonlinearity, a robust H~-control design is used. The design approach is implemented in experiments with a paraplegic subject. The results demonstrate good performance and closed loop stability over the whole range of operation.
Resumo:
The paper analyzes the performance of the unconstrained filtered-x LMS (FxLMS) algorithm for active noise control (ANC), where we remove the constraints on the controller that it must be causal and has finite impulse response. It is shown that the unconstrained FxLMS algorithm always converges to, if stable, the true optimum filter, even if the estimation of the secondary path is not perfect, and its final mean square error is independent of the secondary path. Moreover, we show that the sufficient and necessary stability condition for the feedforward unconstrained FxLMS is that the maximum phase error of the secondary path estimation must be within 90°, which is the only necessary condition for the feedback unconstrained FxLMS. The significance of the analysis on a practical system is also discussed. Finally we show how the obtained results can guide us to design a robust feedback ANC headset.
Resumo:
In industrial practice, constrained steady state optimisation and predictive control are separate, albeit closely related functions within the control hierarchy. This paper presents a method which integrates predictive control with on-line optimisation with economic objectives. A receding horizon optimal control problem is formulated using linear state space models. This optimal control problem is very similar to the one presented in many predictive control formulations, but the main difference is that it includes in its formulation a general steady state objective depending on the magnitudes of manipulated and measured output variables. This steady state objective may include the standard quadratic regulatory objective, together with economic objectives which are often linear. Assuming that the system settles to a steady state operating point under receding horizon control, conditions are given for the satisfaction of the necessary optimality conditions of the steady-state optimisation problem. The method is based on adaptive linear state space models, which are obtained by using on-line identification techniques. The use of model adaptation is justified from a theoretical standpoint and its beneficial effects are shown in simulations. The method is tested with simulations of an industrial distillation column and a system of chemical reactors.
Resumo:
DISOPE is a technique for solving optimal control problems where there are differences in structure and parameter values between reality and the model employed in the computations. The model reality differences can also allow for deliberate simplification of model characteristics and performance indices in order to facilitate the solution of the optimal control problem. The technique was developed originally in continuous time and later extended to discrete time. The main property of the procedure is that by iterating on appropriately modified model based problems the correct optimal solution is achieved in spite of the model-reality differences. Algorithms have been developed in both continuous and discrete time for a general nonlinear optimal control problem with terminal weighting, bounded controls and terminal constraints. The aim of this paper is to show how the DISOPE technique can aid receding horizon optimal control computation in nonlinear model predictive control.
Resumo:
In this paper, a discrete time dynamic integrated system optimisation and parameter estimation algorithm is applied to the solution of the nonlinear tracking optimal control problem. A version of the algorithm with a linear-quadratic model-based problem is developed and implemented in software. The algorithm implemented is tested with simulation examples.
Resumo:
A novel optimising controller is designed that leads a slow process from a sub-optimal operational condition to the steady-state optimum in a continuous way based on dynamic information. Using standard results from optimisation theory and discrete optimal control, the solution of a steady-state optimisation problem is achieved by solving a receding-horizon optimal control problem which uses derivative and state information from the plant via a shadow model and a state-space identifier. The paper analyzes the steady-state optimality of the procedure, develops algorithms with and without control rate constraints and applies the procedure to a high fidelity simulation study of a distillation column optimisation.
Resumo:
Instability is a serious problem for acoustic Active Noise Cancellation (ANC) headsets as a result of large errors in estimating the transfer function of the plant. Typically this occurs when, for example, a wearer adjusts the headset. In this paper, the instability problem of adaptive ANC headset is addressed. To ensure stability of the whole system, we propose a hybrid solution consisting of an analog feedback loop parallel to the digital loop, and the role of the analog loop in stabilizing the headset is analyzed theoretically. Finally the methodology of implementing such a hybrid ANC headset is described in detail. The experiments carried out on the headset prototype show that the headset is robust under considerable fluctuations of the plant transfer characteristics, and has very good noise cancellation performance both for narrow-band and wide-band disturbances.
Resumo:
Here we present an economical and versatile platform for developing motor control and sensory feedback of a prosthetic hand via in vitro mammalian peripheral nerve activity. In this study, closed-loop control of the grasp function of the prosthetic hand was achieved by stimulation of a peripheral nerve preparation in response to slip sensor data from a robotic hand, forming a rudimentary reflex action. The single degree of freedom grasp was triggered by single unit activity from motor and sensory fibers as a result of stimulation. The work presented here provides a novel, reproducible, economic, and robust platform for experimenting with neural control of prosthetic devices before attempting in vivo implementation.