117 resultados para Operator Error


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iatrogenic errors and patient safety in clinical processes are an increasing concern. The quality of process information in hardcopy or electronic form can heavily influence clinical behaviour and decision making errors. Little work has been undertaken to assess the safety impact of clinical process planning documents guiding the clinical actions and decisions. This paper investigates the clinical process documents used in elective surgery and their impact on latent and active clinical errors. Eight clinicians from a large health trust underwent extensive semi- structured interviews to understand their use of clinical documents, and their perceived impact on errors and patient safety. Samples of the key types of document used were analysed. Theories of latent organisational and active errors from the literature were combined with the EDA semiotics model of behaviour and decision making to propose the EDA Error Model. This model enabled us to identify perceptual, evaluation, knowledge and action error types and approaches to reducing their causes. The EDA error model was then used to analyse sample documents and identify error sources and controls. Types of knowledge artefact structures used in the documents were identified and assessed in terms of safety impact. This approach was combined with analysis of the questionnaire findings using existing error knowledge from the literature. The results identified a number of document and knowledge artefact issues that give rise to latent and active errors and also issues concerning medical culture and teamwork together with recommendations for further work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study Dirichlet convolution with a given arithmetical function f as a linear mapping 'f that sends a sequence (an) to (bn) where bn = Pdjn f(d)an=d. We investigate when this is a bounded operator on l2 and ¯nd the operator norm. Of particular interest is the case f(n) = n¡® for its connection to the Riemann zeta function on the line 1, 'f is bounded with k'f k = ³(®). For the unbounded case, we show that 'f : M2 ! M2 where M2 is the subset of l2 of multiplicative sequences, for many f 2 M2. Consequently, we study the `quasi'-norm sup kak = T a 2M2 k'fak kak for large T, which measures the `size' of 'f on M2. For the f(n) = n¡® case, we show this quasi-norm has a striking resemblance to the conjectured maximal order of j³(® + iT )j for ® > 12 .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the growth of error in baroclinic waves. It is found that stable or neutral waves are particularly sensitive to errors in the initial condition. Short stable waves are mainly sensitive to phase errors and the ultra long waves to amplitude errors. Analysis simulation experiments have indicated that the amplitudes of the very long waves become usually too small in the free atmosphere, due to the sparse and very irregular distribution of upper air observations. This also applies to the four-dimensional data assimilation experiments, since the amplitudes of the very long waves are usually underpredicted. The numerical experiments reported here show that if the very long waves have these kinds of amplitude errors in the upper troposphere or lower stratosphere the error is rapidly propagated (within a day or two) to the surface and to the lower troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, was reported by the preceding researchers when the target signals were shown to the subjects at relatively high speed or high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner with each other at various mean tracking frequency. The experimental results showed a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the tracking frequency with that of the transition from a reactive error-correction mode to a proactive anticipatory mode in the mechanical target tracking experiments. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a new sparse kernel density estimator using a forward constrained regression framework, within which the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Our main contribution is to derive a recursive algorithm to select significant kernels one at time based on the minimum integrated square error (MISE) criterion for both the selection of kernels and the estimation of mixing weights. The proposed approach is simple to implement and the associated computational cost is very low. Specifically, the complexity of our algorithm is in the order of the number of training data N, which is much lower than the order of N2 offered by the best existing sparse kernel density estimators. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to those of the classical Parzen window estimate and other existing sparse kernel density estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log⁡〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N log⁡N operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a generalization of collectively compact operator theory in Banach spaces is developed. A feature of the new theory is that the operators involved are no longer required to be compact in the norm topology. Instead it is required that the image of a bounded set under the operator family is sequentially compact in a weaker topology. As an application, the theory developed is used to establish solvability results for a class of systems of second kind integral equations on unbounded domains, this class including in particular systems of Wiener-Hopf integral equations with L1 convolutions kernels

Relevância:

20.00% 20.00%

Publicador:

Resumo:

e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As low carbon technologies become more pervasive, distribution network operators are looking to support the expected changes in the demands on the low voltage networks through the smarter control of storage devices. Accurate forecasts of demand at the single household-level, or of small aggregations of households, can improve the peak demand reduction brought about through such devices by helping to plan the appropriate charging and discharging cycles. However, before such methods can be developed, validation measures are required which can assess the accuracy and usefulness of forecasts of volatile and noisy household-level demand. In this paper we introduce a new forecast verification error measure that reduces the so called “double penalty” effect, incurred by forecasts whose features are displaced in space or time, compared to traditional point-wise metrics, such as Mean Absolute Error and p-norms in general. The measure that we propose is based on finding a restricted permutation of the original forecast that minimises the point wise error, according to a given metric. We illustrate the advantages of our error measure using half-hourly domestic household electrical energy usage data recorded by smart meters and discuss the effect of the permutation restriction.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. Results: We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2 of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log(2) units (6 of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. Conclusions: This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimal utilisation of hyper-spectral satellite observations in numerical weather prediction is often inhibited by incorrectly assuming independent interchannel observation errors. However, in order to represent these observation-error covariance structures, an accurate knowledge of the true variances and correlations is needed. This structure is likely to vary with observation type and assimilation system. The work in this article presents the initial results for the estimation of IASI interchannel observation-error correlations when the data are processed in the Met Office one-dimensional (1D-Var) and four-dimensional (4D-Var) variational assimilation systems. The method used to calculate the observation errors is a post-analysis diagnostic which utilises the background and analysis departures from the two systems. The results show significant differences in the source and structure of the observation errors when processed in the two different assimilation systems, but also highlight some common features. When the observations are processed in 1D-Var, the diagnosed error variances are approximately half the size of the error variances used in the current operational system and are very close in size to the instrument noise, suggesting that this is the main source of error. The errors contain no consistent correlations, with the exception of a handful of spectrally close channels. When the observations are processed in 4D-Var, we again find that the observation errors are being overestimated operationally, but the overestimation is significantly larger for many channels. In contrast to 1D-Var, the diagnosed error variances are often larger than the instrument noise in 4D-Var. It is postulated that horizontal errors of representation, not seen in 1D-Var, are a significant contributor to the overall error here. Finally, observation errors diagnosed from 4D-Var are found to contain strong, consistent correlation structures for channels sensitive to water vapour and surface properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the massless Dirac operator on a 3-torus equipped with Euclidean metric and standard spin structure. It is known that the eigenvalues can be calculated explicitly: the spectrum is symmetric about zero and zero itself is a double eigenvalue. The aim of the paper is to develop a perturbation theory for the eigenvalue with smallest modulus with respect to perturbations of the metric. Here the application of perturbation techniques is hindered by the fact that eigenvalues of the massless Dirac operator have even multiplicity, which is a consequence of this operator commuting with the antilinear operator of charge conjugation (a peculiar feature of dimension 3). We derive an asymptotic formula for the eigenvalue with smallest modulus for arbitrary perturbations of the metric and present two particular families of Riemannian metrics for which the eigenvalue with smallest modulus can be evaluated explicitly. We also establish a relation between our asymptotic formula and the eta invariant.