88 resultados para Online data processing
Resumo:
The discourse surrounding the virtual has moved away from the utopian thinking accompanying the rise of the Internet in the 1990s. The Cyber-gurus of the last decades promised a technotopia removed from materiality and the confines of the flesh and the built environment, a liberation from old institutions and power structures. But since then, the virtual has grown into a distinct yet related sphere of cultural and political production that both parallels and occasionally flows over into the old world of material objects. The strict dichotomy of matter and digital purity has been replaced more recently with a more complex model where both the world of stuff and the world of knowledge support, resist and at the same time contain each other. Online social networks amplify and extend existing ones; other cultural interfaces like youtube have not replaced the communal experience of watching moving images in a semi-public space (the cinema) or the semi-private space (the family living room). Rather the experience of viewing is very much about sharing and communicating, offering interpretations and comments. Many of the web’s strongest entities (Amazon, eBay, Gumtree etc.) sit exactly at this juncture of applying tools taken from the knowledge management industry to organize the chaos of the material world along (post-)Fordist rationality. Since the early 1990s there have been many artistic and curatorial attempts to use the Internet as a platform of producing and exhibiting art, but a lot of these were reluctant to let go of the fantasy of digital freedom. Storage Room collapses the binary opposition of real and virtual space by using online data storage as a conduit for IRL art production. The artworks here will not be available for viewing online in a 'screen' environment but only as part of a downloadable package with the intention that the exhibition could be displayed (in a physical space) by any interested party and realised as ambitiously or minimally as the downloader wishes, based on their means. The artists will therefore also supply a set of instructions for the physical installation of the work alongside the digital files. In response to this curatorial initiative, File Transfer Protocol invites seven UK based artists to produce digital art for a physical environment, addressing the intersection between the virtual and the material. The files range from sound, video, digital prints and net art, blueprints for an action to take place, something to be made, a conceptual text piece, etc. About the works and artists: Polly Fibre is the pseudonym of London-based artist Christine Ellison. Ellison creates live music using domestic devices such as sewing machines, irons and slide projectors. Her costumes and stage sets propose a physical manifestation of the virtual space that is created inside software like Photoshop. For this exhibition, Polly Fibre invites the audience to create a musical composition using a pair of amplified scissors and a turntable. http://www.pollyfibre.com John Russell, a founding member of 1990s art group Bank, is an artist, curator and writer who explores in his work the contemporary political conditions of the work of art. In his digital print, Russell collages together visual representations of abstract philosophical ideas and transforms them into a post apocalyptic landscape that is complex and banal at the same time. www.john-russell.org The work of Bristol based artist Jem Nobel opens up a dialogue between the contemporary and the legacy of 20th century conceptual art around questions of collectivism and participation, authorship and individualism. His print SPACE concretizes the representation of the most common piece of Unicode: the vacant space between words. In this way, the gap itself turns from invisible cipher to sign. www.jemnoble.com Annabel Frearson is rewriting Mary Shelley's Frankenstein using all and only the words from the original text. Frankenstein 2, or the Monster of Main Stream, is read in parts by different performers, embodying the psychotic character of the protagonist, a mongrel hybrid of used language. www.annabelfrearson.com Darren Banks uses fragments of effect laden Holywood films to create an impossible space. The fictitious parts don't add up to a convincing material reality, leaving the viewer with a failed amalgamation of simulations of sophisticated technologies. www.darrenbanks.co.uk FIELDCLUB is collaboration between artist Paul Chaney and researcher Kenna Hernly. Chaney and Hernly developed together a project that critically examines various proposals for the management of sustainable ecological systems. Their FIELDMACHINE invites the public to design an ideal agricultural field. By playing with different types of crops that are found in the south west of England, it is possible for the user, for example, to create a balanced, but protein poor, diet or to simply decide to 'get rid' of half the population. The meeting point of the Platonic field and it physical consequences, generates a geometric abstraction that investigates the relationship between modernist utopianism and contemporary actuality. www.fieldclub.co.uk Pil and Galia Kollectiv, who have also curated the exhibition are London-based artists and run the xero, kline & coma gallery. Here they present a dialogue between two computers. The conversation opens with a simple text book problem in business studies. But gradually the language, mimicking the application of game theory in the business sector, becomes more abstract. The two interlocutors become adversaries trapped forever in a competition without winners. www.kollectiv.co.uk
Resumo:
The increasing use of social media, applications or platforms that allow users to interact online, ensures that this environment will provide a useful source of evidence for the forensics examiner. Current tools for the examination of digital evidence find this data problematic as they are not designed for the collection and analysis of online data. Therefore, this paper presents a framework for the forensic analysis of user interaction with social media. In particular, it presents an inter-disciplinary approach for the quantitative analysis of user engagement to identify relational and temporal dimensions of evidence relevant to an investigation. This framework enables the analysis of large data sets from which a (much smaller) group of individuals of interest can be identified. In this way, it may be used to support the identification of individuals who might be ‘instigators’ of a criminal event orchestrated via social media, or a means of potentially identifying those who might be involved in the ‘peaks’ of activity. In order to demonstrate the applicability of the framework, this paper applies it to a case study of actors posting to a social media Web site.
Resumo:
This research paper reports the findings from an international survey of fieldwork practitioners on their use of technology to enhance fieldwork teaching and learning. It was found that there was high information technology usage before and after time in the field, but some were also using portable devices such as smartphones and global positioning system whilst out in the field. The main pedagogic reasons cited for the use of technology were the need for efficient data processing and to develop students' technological skills. The influencing factors and barriers to the use of technology as well as the importance of emerging technologies are discussed.
Resumo:
This paper describes the techniques used to obtain sea surface temperature (SST) retrievals from the Geostationary Operational Environmental Satellite 12 (GOES-12) at the National Oceanic and Atmospheric Administration’s Office of Satellite Data Processing and Distribution. Previous SST retrieval techniques relying on channels at 11 and 12 μm are not applicable because GOES-12 lacks the latter channel. Cloud detection is performed using a Bayesian method exploiting fast-forward modeling of prior clear-sky radiances using numerical weather predictions. The basic retrieval algorithm used at nighttime is based on a linear combination of brightness temperatures at 3.9 and 11 μm. In comparison with traditional split window SSTs (using 11- and 12-μm channels), simulations show that this combination has maximum scatter when observing drier colder scenes, with a comparable overall performance. For daytime retrieval, the same algorithm is applied after estimating and removing the contribution to brightness temperature in the 3.9-μm channel from solar irradiance. The correction is based on radiative transfer simulations and comprises a parameterization for atmospheric scattering and a calculation of ocean surface reflected radiance. Potential use of the 13-μm channel for SST is shown in a simulation study: in conjunction with the 3.9-μm channel, it can reduce the retrieval error by 30%. Some validation results are shown while a companion paper by Maturi et al. shows a detailed analysis of the validation results for the operational algorithms described in this present article.
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV
Resumo:
Human ICT implants, such as RFID implants, cochlear implants, cardiac pacemakers, Deep Brain Stimulation, bionic limbs connected to the nervous system, and networked cognitive prostheses, are becoming increasingly complex. With ever-growing data processing functionalities in these implants, privacy and security become vital concerns. Electronic attacks on human ICT implants can cause significant harm, both to implant subjects and to their environment. This paper explores the vulnerabilities which human implants pose to crime victimisation in light of recent technological developments, and analyses how the law can deal with emerging challenges of what may well become the next generation of cybercrime: attacks targeted at technology implanted in the human body. After a state-of-the-art description of relevant types of human implants and a discussion how these implants challenge existing perceptions of the human body, we describe how various modes of attacks, such as sniffing, hacking, data interference, and denial of service, can be committed against implants. Subsequently, we analyse how these attacks can be assessed under current substantive and procedural criminal law, drawing on examples from UK and Dutch law. The possibilities and limitations of cybercrime provisions (eg, unlawful access, system interference) and bodily integrity provisions (eg, battery, assault, causing bodily harm) to deal with human-implant attacks are analysed. Based on this assessment, the paper concludes that attacks on human implants are not only a new generation in the evolution of cybercrime, but also raise fundamental questions on how criminal law conceives of attacks. Traditional distinctions between physical and non-physical modes of attack, between human bodies and things, between exterior and interior of the body need to be re-interpreted in light of developments in human implants. As the human body and technology become increasingly intertwined, cybercrime legislation and body-integrity crime legislation will also become intertwined, posing a new puzzle that legislators and practitioners will sooner or later have to solve.
Resumo:
The Bollène-2002 Experiment was aimed at developing the use of a radar volume-scanning strategy for conducting radar rainfall estimations in the mountainous regions of France. A developmental radar processing system, called Traitements Régionalisés et Adaptatifs de Données Radar pour l’Hydrologie (Regionalized and Adaptive Radar Data Processing for Hydrological Applications), has been built and several algorithms were specifically produced as part of this project. These algorithms include 1) a clutter identification technique based on the pulse-to-pulse variability of reflectivity Z for noncoherent radar, 2) a coupled procedure for determining a rain partition between convective and widespread rainfall R and the associated normalized vertical profiles of reflectivity, and 3) a method for calculating reflectivity at ground level from reflectivities measured aloft. Several radar processing strategies, including nonadaptive, time-adaptive, and space–time-adaptive variants, have been implemented to assess the performance of these new algorithms. Reference rainfall data were derived from a careful analysis of rain gauge datasets furnished by the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. The assessment criteria for five intense and long-lasting Mediterranean rain events have proven that good quantitative precipitation estimates can be obtained from radar data alone within 100-km range by using well-sited, well-maintained radar systems and sophisticated, physically based data-processing systems. The basic requirements entail performing accurate electronic calibration and stability verification, determining the radar detection domain, achieving efficient clutter elimination, and capturing the vertical structure(s) of reflectivity for the target event. Radar performance was shown to depend on type of rainfall, with better results obtained with deep convective rain systems (Nash coefficients of roughly 0.90 for point radar–rain gauge comparisons at the event time step), as opposed to shallow convective and frontal rain systems (Nash coefficients in the 0.6–0.8 range). In comparison with time-adaptive strategies, the space–time-adaptive strategy yields a very significant reduction in the radar–rain gauge bias while the level of scatter remains basically unchanged. Because the Z–R relationships have not been optimized in this study, results are attributed to an improved processing of spatial variations in the vertical profile of reflectivity. The two main recommendations for future work consist of adapting the rain separation method for radar network operations and documenting Z–R relationships conditional on rainfall type.
Resumo:
The use of online data is becoming increasingly essential for the generation of insight in today’s research environment. This reflects the much wider range of data available online and the key role that social media now plays in interpersonal communication. However, the process of gaining permission to use social media data for research purposes creates a number of significant issues when considering compatibility with professional ethics guidelines. This paper critically explores the application of existing informed consent policies to social media research and compares with the form of consent gained by the social networks themselves, which we label ‘uninformed consent’. We argue that, as currently constructed, informed consent carries assumptions about the nature of privacy that are not consistent with the way that consumers behave in an online environment. On the other hand, uninformed consent relies on asymmetric relationships that are unlikely to succeed in an environment based on co-creation of value. The paper highlights the ethical ambiguity created by current approaches for gaining customer consent, and proposes a new conceptual framework based on participative consent that allows for greater alignment between consumer privacy and ethical concerns.
Resumo:
SOA (Service Oriented Architecture), workflow, the Semantic Web, and Grid computing are key enabling information technologies in the development of increasingly sophisticated e-Science infrastructures and application platforms. While the emergence of Cloud computing as a new computing paradigm has provided new directions and opportunities for e-Science infrastructure development, it also presents some challenges. Scientific research is increasingly finding that it is difficult to handle “big data” using traditional data processing techniques. Such challenges demonstrate the need for a comprehensive analysis on using the above mentioned informatics techniques to develop appropriate e-Science infrastructure and platforms in the context of Cloud computing. This survey paper describes recent research advances in applying informatics techniques to facilitate scientific research particularly from the Cloud computing perspective. Our particular contributions include identifying associated research challenges and opportunities, presenting lessons learned, and describing our future vision for applying Cloud computing to e-Science. We believe our research findings can help indicate the future trend of e-Science, and can inform funding and research directions in how to more appropriately employ computing technologies in scientific research. We point out the open research issues hoping to spark new development and innovation in the e-Science field.
Resumo:
Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, A cross layer based on the modified versions of APTEEN and GinMAC has been designed and implemented, with new features, such as a mobility module and routes discovery algorithms have been added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability for the proposed healthcare application.
Resumo:
Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient Medium Access Control (MAC) and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.
Resumo:
Using Wireless Sensor Networks (WSNs) in healthcare systems has had a lot of attention in recent years. In much of this research tasks like sensor data processing, health states decision making and emergency message sending are done by a remote server. Many patients with lots of sensor data consume a great deal of communication resources, bring a burden to the remote server and delay the decision time and notification time. A healthcare application for elderly people using WSN has been simulated in this paper. A WSN designed for the proposed healthcare application needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from the patients to the medical centre. Based on these requirements, the GinMAC protocol including a mobility module has been chosen, to provide the required performance such as reliability for data delivery and energy saving. Simulation results show that this modification to GinMAC can offer the required performance for the proposed healthcare application.
Resumo:
This special issue is focused on the assessment of algorithms for the observation of Earth’s climate from environ- mental satellites. Climate data records derived by remote sensing are increasingly a key source of insight into the workings of and changes in Earth’s climate system. Producers of data sets must devote considerable effort and expertise to maximise the true climate signals in their products and minimise effects of data processing choices and changing sensors. A key choice is the selection of algorithm(s) for classification and/or retrieval of the climate variable. Within the European Space Agency Climate Change Initiative, science teams undertook systematic assessment of algorithms for a range of essential climate variables. The papers in the special issue report some of these exercises (for ocean colour, aerosol, ozone, greenhouse gases, clouds, soil moisture, sea surface temper- ature and glaciers). The contributions show that assessment exercises must be designed with care, considering issues such as the relative importance of different aspects of data quality (accuracy, precision, stability, sensitivity, coverage, etc.), the availability and degree of independence of validation data and the limitations of validation in characterising some important aspects of data (such as long-term stability or spatial coherence). As well as re- quiring a significant investment of expertise and effort, systematic comparisons are found to be highly valuable. They reveal the relative strengths and weaknesses of different algorithmic approaches under different observa- tional contexts, and help ensure that scientific conclusions drawn from climate data records are not influenced by observational artifacts, but are robust.