173 resultados para Numerical Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations of the top-of-atmosphere radiative-energy budget from the Met Office global numerical weather-prediction model are evaluated using new data from the Geostationary Earth Radiation Budget (GERB) instrument on board the Meteosat-8 satellite. Systematic discrepancies between the model simulations and GERB measurements greater than 20 Wm-2 in outgoing long-wave radiation (OLR) and greater than 60 Wm-2 in reflected short-wave radiation (RSR) are identified over the period April-September 2006 using 12 UTC data. Convective cloud over equatorial Africa is spatially less organized and less reflective than in the GERB data. This bias depends strongly on convective-cloud cover, which is highly sensitive to changes in the model convective parametrization. Underestimates in model OLR over the Gulf of Guinea coincide with unrealistic southerly cloud outflow from convective centres to the north. Large overestimates in model RSR over the subtropical ocean, greater than 50 Wm-2 at 12 UTC, are explained by unrealistic radiative properties of low-level cloud relating to overestimation of cloud liquid water compared with independent satellite measurements. The results of this analysis contribute to the development and improvement of parametrizations in the global forecast model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport of stratospheric air deep into the troposphere via convection is investigated numerically using the UK Met Office Unified Model. A convective system that formed on 27 June 2004 near southeast England, in the vicinity an upper level potential vorticity anomaly and a lowered tropopause, provides the basis for analysis. Transport is diagnosed using a stratospheric tracer that can either be passed through or withheld from the model’s convective parameterization scheme. Three simulations are performed at increasingly finer resolutions, with horizontal grid lengths of 12, 4, and 1 km. In the 12 and 4 km simulations, tracer is transported deeply into the troposphere by the parameterized convection. In the 1 km simulation, for which the convective parameterization is disengaged, deep transport is still accomplished but with a much smaller magnitude. However, the 1 km simulation resolves stirring along the tropopause that does not exist in the coarser simulations. In all three simulations, the concentration of the deeply transported tracer is small, three orders of magnitude less than that of the shallow transport near the tropopause, most likely because of the efficient dilution of parcels in the lower troposphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An operational dust forecasting model is developed by including the Met Office Hadley Centre climate model dust parameterization scheme, within a Met Office regional numerical weather prediction (NWP) model. The model includes parameterizations for dust uplift, dust transport, and dust deposition in six discrete size bins and provides diagnostics such as the aerosol optical depth. The results are compared against surface and satellite remote sensing measurements and against in situ measurements from the Facility for Atmospheric Airborne Measurements for a case study when a strong dust event was forecast. Comparisons are also performed against satellite and surface instrumentation for the entire month of August. The case study shows that this Saharan dust NWP model can provide very good guidance of dust events, as much as 42 h ahead. The analysis of monthly data suggests that the mean and variability in the dust model is also well represented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fast radiative transfer model (RTM) to compute emitted infrared radiances for a very high resolution radiometer (VHRR), onboard the operational Indian geostationary satellite Kalpana has been developed and verified. This work is a step towards the assimilation of Kalpana water vapor (WV) radiances into numerical weather prediction models. The fast RTM uses a regression‐based approach to parameterize channel‐specific convolved level to space transmittances. A comparison between the fast RTM and the line‐by‐line RTM demonstrated that the fast RTM can simulate line‐by‐line radiances for the Kalpana WV channel to an accuracy better than the instrument noise, while offering more rapid radiance calculations. A comparison of clear sky radiances of the Kalpana WV channel with the ECMWF model first guess radiances is also presented, aiming to demonstrate the fast RTM performance with the real observations. In order to assimilate the radiances from Kalpana, a simple scheme for bias correction has been suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The entropy budget is calculated of the coupled atmosphere–ocean general circulation model HadCM3. Estimates of the different entropy sources and sinks of the climate system are obtained directly from the diabatic heating terms, and an approximate estimate of the planetary entropy production is also provided. The rate of material entropy production of the climate system is found to be ∼50 mW m−2 K−1, a value intermediate in the range 30–70 mW m−2 K−1 previously reported from different models. The largest part of this is due to sensible and latent heat transport (∼38 mW m−2 K−1). Another 13 mW m−2 K−1 is due to dissipation of kinetic energy in the atmosphere by friction and Reynolds stresses. Numerical entropy production in the atmosphere dynamical core is found to be about 0.7 mW m−2 K−1. The material entropy production within the ocean due to turbulent mixing is ∼1 mW m−2 K−1, a very small contribution to the material entropy production of the climate system. The rate of change of entropy of the model climate system is about 1 mW m−2 K−1 or less, which is comparable with the typical size of the fluctuations of the entropy sources due to interannual variability, and a more accurate closure of the budget than achieved by previous analyses. Results are similar for FAMOUS, which has a lower spatial resolution but similar formulation to HadCM3, while more substantial differences are found with respect to other models, suggesting that the formulation of the model has an important influence on the climate entropy budget. Since this is the first diagnosis of the entropy budget in a climate model of the type and complexity used for projection of twenty-first century climate change, it would be valuable if similar analyses were carried out for other such models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheal Jane Mine in Cornwall, UK. The plant consists of three separate systems, each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pretreatment utilised to increase the pH of the influent minewater (pH <4): lime dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pretreatment. Historical data (1994-1997) indicate median Fe reduction between 55% and 92%, sulphate removal in the range of 3-38% and removal of target metals (cadmium, copper and zinc) below detection limits, depending on pretreatment and flow rates through the system. A new model to simulate the processes and dynamics of the wetlands systems is described, as well as the application of the model to experimental data collected at the pilot plant. The model is process based, and utilises reaction kinetic approaches based on experimental microbial techniques rather than an equilibrium approach to metal precipitation. The model is dynamic and utilises numerical integration routines to solve a set of differential equations that describe the behaviour of 20 variables over the 17 pilot plant cells on a daily basis. The model outputs at each cell boundary are evaluated and compared with the measured data, and the model is demonstrated to provide a good representation of the complex behaviour of the wetland system for a wide range of variables. (C) 2004 Elsevier B.V/ All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ozone and temperature profiles from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been assimilated, using three-dimensional variational assimilation, into a stratosphere troposphere version of the Met Office numerical weather-prediction system. Analyses are made for the month of September 2002, when there was an unprecedented split in the southern hemisphere polar vortex. The analyses are validated against independent ozone observations from sondes, limb-occultation and total column ozone satellite instruments. Through most of the stratosphere, precision varies from 5 to 15%, and biases are 15% or less of the analysed field. Problems remain in the vortex and below the 60 hPa. level, especially at the tropopause where the analyses have too much ozone and poor agreement with independent data. Analysis problems are largely a result of the model rather than the data, giving confidence in the MIPAS ozone retrievals, though there may be a small high bias in MIPAS ozone in the lower stratosphere. Model issues include an excessive Brewer-Dobson circulation, which results both from known problems with the tracer transport scheme and from the data assimilation of dynamical variables. The extreme conditions of the vortex split reveal large differences between existing linear ozone photochemistry schemes. Despite these issues, the ozone analyses are able to successfully describe the ozone hole split and compare well to other studies of this event. Recommendations are made for the further development of the ozone assimilation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constant-α force-free magnetic flux rope models have proven to be a valuable first step toward understanding the global context of in situ observations of magnetic clouds. However, cylindrical symmetry is necessarily assumed when using such models, and it is apparent from both observations and modeling that magnetic clouds have highly noncircular cross sections. A number of approaches have been adopted to relax the circular cross section approximation: frequently, the cross-sectional shape is allowed to take an arbitrarily chosen shape (usually elliptical), increasing the number of free parameters that are fit between data and model. While a better “fit” may be achieved in terms of reducing the mean square error between the model and observed magnetic field time series, it is not always clear that this translates to a more accurate reconstruction of the global structure of the magnetic cloud. We develop a new, noncircular cross section flux rope model that is constrained by observations of CMEs/ICMEs and knowledge of the physical processes acting on the magnetic cloud: The magnetic cloud is assumed to initially take the form of a force-free flux rope in the low corona but to be subsequently deformed by a combination of axis-centered self-expansion and heliocentric radial expansion. The resulting analytical solution is validated by fitting to artificial time series produced by numerical MHD simulations of magnetic clouds and shown to accurately reproduce the global structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skill of numerical Lagrangian drifter trajectories in three numerical models is assessed by comparing these numerically obtained paths to the trajectories of drifting buoys in the real ocean. The skill assessment is performed using the two-sample Kolmogorov–Smirnov statistical test. To demonstrate the assessment procedure, it is applied to three different models of the Agulhas region. The test can either be performed using crossing positions of one-dimensional sections in order to test model performance in specific locations, or using the total two-dimensional data set of trajectories. The test yields four quantities: a binary decision of model skill, a confidence level which can be used as a measure of goodness-of-fit of the model, a test statistic which can be used to determine the sensitivity of the confidence level, and cumulative distribution functions that aid in the qualitative analysis. The ordering of models by their confidence levels is the same as the ordering based on the qualitative analysis, which suggests that the method is suited for model validation. Only one of the three models, a 1/10° two-way nested regional ocean model, might have skill in the Agulhas region. The other two models, a 1/2° global model and a 1/8° assimilative model, might have skill only on some sections in the region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of orography on the structure of stationary planetary Rossby waves is studied in the context of a contour dynamics model of the large-scale atmospheric flow. Orography of infinitesimal and finite amplitude is studied using analytical and numerical techniques. Three different types of orography are considered: idealized orography in the form of a global wave, idealized orography in the form of a local table mountain, and the earth's orography. The study confirms the importance of resonances, both in the infinitesimal orography and in the finite orography cases. With finite orography the stationary waves organize themselves into a one-dimensional set of solutions, which due to the resonances, is piecewise connected. It is pointed out that these stationary waves could be relevant for atmospheric regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a numerical study of the evolution of a Coronal Mass Ejection (CME) and its interaction with the coronal magnetic field based on the 12 May 1997, CME event using a global MagnetoHydroDynamic (MHD) model for the solar corona. The ambient solar wind steady-state solution is driven by photospheric magnetic field data, while the solar eruption is obtained by superimposing an unstable flux rope onto the steady-state solution. During the initial stage of CME expansion, the core flux rope reconnects with the neighboring field, which facilitates lateral expansion of the CME footprint in the low corona. The flux rope field also reconnects with the oppositely orientated overlying magnetic field in the manner of the breakout model. During this stage of the eruption, the simulated CME rotates counter-clockwise to achieve an orientation that is in agreement with the interplanetary flux rope observed at 1 AU. A significant component of the CME that expands into interplanetary space comprises one of the side lobes created mainly as a result of reconnection with the overlying field. Within 3 hours, reconnection effectively modifies the CME connectivity from the initial condition where both footpoints are rooted in the active region to a situation where one footpoint is displaced into the quiet Sun, at a significant distance (≈1R ) from the original source region. The expansion and rotation due to interaction with the overlying magnetic field stops when the CME reaches the outer edge of the helmet streamer belt, where the field is organized on a global scale. The simulation thus offers a new view of the role reconnection plays in rotating a CME flux rope and transporting its footpoints while preserving its core structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL-LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Danish Eulerian Model (DEM) is a powerful air pollution model, designed to calculate the concentrations of various dangerous species over a large geographical region (e.g. Europe). It takes into account the main physical and chemical processes between these species, the actual meteorological conditions, emissions, etc.. This is a huge computational task and requires significant resources of storage and CPU time. Parallel computing is essential for the efficient practical use of the model. Some efficient parallel versions of the model were created over the past several years. A suitable parallel version of DEM by using the Message Passing Interface library (AIPI) was implemented on two powerful supercomputers of the EPCC - Edinburgh, available via the HPC-Europa programme for transnational access to research infrastructures in EC: a Sun Fire E15K and an IBM HPCx cluster. Although the implementation is in principal, the same for both supercomputers, few modifications had to be done for successful porting of the code on the IBM HPCx cluster. Performance analysis and parallel optimization was done next. Results from bench marking experiments will be presented in this paper. Another set of experiments was carried out in order to investigate the sensitivity of the model to variation of some chemical rate constants in the chemical submodel. Certain modifications of the code were necessary to be done in accordance with this task. The obtained results will be used for further sensitivity analysis Studies by using Monte Carlo simulation.