273 resultados para Multidimensional modelling
Resumo:
Many time series are measured monthly, either as averages or totals, and such data often exhibit seasonal variability-the values of the series are consistently larger for some months of the year than for others. A typical series of this type is the number of deaths each month attributed to SIDS (Sudden Infant Death Syndrome). Seasonality can be modelled in a number of ways. This paper describes and discusses various methods for modelling seasonality in SIDS data, though much of the discussion is relevant to other seasonally varying data. There are two main approaches, either fitting a circular probability distribution to the data, or using regression-based techniques to model the mean seasonal behaviour. Both are discussed in this paper.
Resumo:
Europe's widely distributed climate modelling expertise, now organized in the European Network for Earth System Modelling (ENES), is both a strength and a challenge. Recognizing this, the European Union's Program for Integrated Earth System Modelling (PRISM) infrastructure project aims at designing a flexible and friendly user environment to assemble, run and post-process Earth System models. PRISM was started in December 2001 with a duration of three years. This paper presents the major stages of PRISM, including: (1) the definition and promotion of scientific and technical standards to increase component modularity; (2) the development of an end-to-end software environment (graphical user interface, coupling and I/O system, diagnostics, visualization) to launch, monitor and analyse complex Earth system models built around state-of-art community component models (atmosphere, ocean, atmospheric chemistry, ocean bio-chemistry, sea-ice, land-surface); and (3) testing and quality standards to ensure high-performance computing performance on a variety of platforms. PRISM is emerging as a core strategic software infrastructure for building the European research area in Earth system sciences. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Flow in the world's oceans occurs at a wide range of spatial scales, from a fraction of a metre up to many thousands of kilometers. In particular, regions of intense flow are often highly localised, for example, western boundary currents, equatorial jets, overflows and convective plumes. Conventional numerical ocean models generally use static meshes. The use of dynamically-adaptive meshes has many potential advantages but needs to be guided by an error measure reflecting the underlying physics. A method of defining an error measure to guide an adaptive meshing algorithm for unstructured tetrahedral finite elements, utilizing an adjoint or goal-based method, is described here. This method is based upon a functional, encompassing important features of the flow structure. The sensitivity of this functional, with respect to the solution variables, is used as the basis from which an error measure is derived. This error measure acts to predict those areas of the domain where resolution should be changed. A barotropic wind driven gyre problem is used to demonstrate the capabilities of the method. The overall objective of this work is to develop robust error measures for use in an oceanographic context which will ensure areas of fine mesh resolution are used only where and when they are required. (c) 2006 Elsevier Ltd. All rights reserved.