105 resultados para Morphological traits
Resumo:
According to dual-system accounts of English past-tense processing, regular forms are decomposed into their stem and affix (played=play+ed) based on an implicit linguistic rule, whereas irregular forms (kept) are retrieved directly from the mental lexicon. In second language (L2) processing research, it has been suggested that L2 learners do not have rule-based decomposing abilities, so they process regular past-tense forms similarly to irregular ones (Silva & Clahsen 2008), without applying the morphological rule. The present study investigates morphological processing of regular and irregular verbs in Greek-English L2 learners and native English speakers. In a masked-priming experiment with regular and irregular prime-target verb pairs (playedplay/kept-keep), native speakers showed priming effects for regular pairs, compared to unrelated pairs, indicating decomposition; conversely, L2 learners showed inhibitory effects. At the same time, both groups revealed priming effects for irregular pairs. We discuss these findings in the light of available theories on L2 morphological processing.
Resumo:
Key message We have identified QTLs for stomatal characteristics on chromosome II of faba bean by applying SNPs derived from M. truncatula , and have identified candidate genes within these QTLs using synteny between the two species. Abstract Faba bean (Vicia faba L.) is a valuable food and feed crop worldwide, but drought often limits its production, and its genome is large and poorly mapped. No information is available on the effects of genomic regions and genes on drought adaptation characters such as stomatal characteristics in this species, but the synteny between the sequenced model legume, Medicago truncatula, and faba bean can be used to identify candidate genes. A mapping population of 211 F5 recombinant inbred lines (Mélodie/2 × ILB 938/2) were phenotyped to identify quantitative trait loci (QTL) affecting stomatal morphology and function, along with seed weight, under well-watered conditions in a climate-controlled glasshouse in 2013 and 2014. Canopy temperature (CT) was evaluated in 2013 under water-deficit (CTd). In total, 188 polymorphic single nucleotide polymorphisms (SNPs), developed from M. truncatula genome data, were assigned to nine linkage groups that covered ~928 cM of the faba bean genome with an average inter-marker distance of 5.8 cM. 15 putative QTLs were detected, of which eight (affecting stomatal density, length and conductance and CT) co-located on chromosome II, in the vicinity of a possible candidate gene—a receptor-like protein kinase found in the syntenic interval of M. truncatula chromosome IV. A ribose-phosphate pyrophosphokinase from M. truncatula chromosome V, postulated as a possible candidate gene for the QTL for CTd, was found some distance away in the same chromosome. These results demonstrate that genomic information from M. truncatula can successfully be translated to the faba bean genome.
Resumo:
MAGIC populations represent one of a new generation of crop genetic mapping resources combining high genetic recombination and diversity. We describe the creation and validation of an eight-parent MAGIC population consisting of 1091 F7 lines of winter-sown wheat (Triticum aestivum L.). Analyses based on genotypes from a 90,000-single nucleotide polymorphism (SNP) array find the population to be well-suited as a platform for fine-mapping quantitative trait loci (QTL) and gene isolation. Patterns of linkage disequilibrium (LD) show the population to be highly recombined; genetic marker diversity among the founders was 74% of that captured in a larger set of 64 wheat varieties, and 54% of SNPs segregating among the 64 lines also segregated among the eight founder lines. In contrast, a commonly used reference bi-parental population had only 54% of the diversity of the 64 varieties with 27% of SNPs segregating. We demonstrate the potential of this MAGIC resource by identifying a highly diagnostic marker for the morphological character "awn presence/absence" and independently validate it in an association-mapping panel. These analyses show this large, diverse, and highly recombined MAGIC population to be a powerful resource for the genetic dissection of target traits in wheat, and it is well-placed to efficiently exploit ongoing advances in phenomics and genomics. Genetic marker and trait data, together with instructions for access to seed, are available at http://www.niab.com/MAGIC/.
Resumo:
The sternal end of the clavicle has been illustrated to be useful in aging young adults, however, no studies have investigated what age-related changes occur to the sternal end post epiphyseal fusion. In this study, three morphological features (i.e., surface topography, porosity, and osteophyte formation) were examined and scored using 564 clavicles of individuals of European ancestry (n = 318 males; n = 246 females), with known ages of 40+ years, from four documented skeletal collections: Hamann-Todd, Pretoria, St. Bride's, and Coimbra. An ordinal scoring method was developed for each of the three traits. Surface topography showed the strongest correlation with age, and composite scores (formed by summing the three separate trait scores) indicated progressive degeneration of the surface with increasing chronological age. Linear regression analyses were performed on the trait scores to produce pooled-sample age estimation equations. Blind tests of the composite score method and regression formulae on 56 individuals, aged 40+ years, from Christ Church Spitalfields, suggest accuracies of 96.4% for both methods. These preliminary results display the first evidence of the utility of the sternal end of the clavicle in aging older adult individuals. However, in the current format, these criteria should only be applied to individuals already identified as over 40 years in order to refine the age ranges used for advanced age. These findings do suggest the sternal end of the clavicle has potential to aid age estimates beyond the traditional "mature adult" age category (i.e., 46+ years), and provides several suggestions for future research.
Resumo:
The aim of this study has been to characterize adult human somatic periodontium-derived stem cells (PDSCS) isolated from human periodontium and to follow their differentiation after cell culture. PDSCS were isolated from human periodontal tissue and cultured as spheres in serum-free medium. After 10 days the primary spheres were dissociated and the secondary spheres sub-cultured for another 1-2 weeks. Cells from different time points were analyzed, and immunohistochemical and electron microscopic investigations carried out. Histological analysis showed differentiation of spheres deriving from the PDSCS with central production of extracellular matrix beginning 3 days after sub-culturing. Isolated PDSCS developed pseudopodia which contained actin. Tubulin was found in the central portion of the cells. Pseudopodia between different cells anastomosed, indicating intercellular transport. Immunostaining for osteopontin demonstrated a positive reaction in primary spheres and within extracellular matrix vesicles after sub-culturing. In cell culture under serum-free conditions human PDSCS form spheres which are capable of producing extracellular matrix. Further investigations have do be carried out to investigate the capability of these cells to differentiate into osteogenic progenitor cells.
Resumo:
Background Atypical self-processing is an emerging theme in autism research, suggested by lower self-reference effect in memory, and atypical neural responses to visual self-representations. Most research on physical self-processing in autism uses visual stimuli. However, the self is a multimodal construct, and therefore, it is essential to test self-recognition in other sensory modalities as well. Self-recognition in the auditory modality remains relatively unexplored and has not been tested in relation to autism and related traits. This study investigates self-recognition in auditory and visual domain in the general population and tests if it is associated with autistic traits. Methods Thirty-nine neurotypical adults participated in a two-part study. In the first session, individual participant’s voice was recorded and face was photographed and morphed respectively with voices and faces from unfamiliar identities. In the second session, participants performed a ‘self-identification’ task, classifying each morph as ‘self’ voice (or face) or an ‘other’ voice (or face). All participants also completed the Autism Spectrum Quotient (AQ). For each sensory modality, slope of the self-recognition curve was used as individual self-recognition metric. These two self-recognition metrics were tested for association between each other, and with autistic traits. Results Fifty percent ‘self’ response was reached for a higher percentage of self in the auditory domain compared to the visual domain (t = 3.142; P < 0.01). No significant correlation was noted between self-recognition bias across sensory modalities (τ = −0.165, P = 0.204). Higher recognition bias for self-voice was observed in individuals higher in autistic traits (τ AQ = 0.301, P = 0.008). No such correlation was observed between recognition bias for self-face and autistic traits (τ AQ = −0.020, P = 0.438). Conclusions Our data shows that recognition bias for physical self-representation is not related across sensory modalities. Further, individuals with higher autistic traits were better able to discriminate self from other voices, but this relation was not observed with self-face. A narrow self-other overlap in the auditory domain seen in individuals with high autistic traits could arise due to enhanced perceptual processing of auditory stimuli often observed in individuals with autism.
Resumo:
BACKGROUND: Mealybugs (Hemiptera: Coccoidea: Pseudococcidae) are key vectors of badnaviruses, including Cacao Swollen Shoot Virus (CSSV) the most damaging virus affecting cacao (Theobroma cacao L.). The effectiveness of mealybugs as virus vectors is species dependent and it is therefore vital that CSSV resistance breeding programmes in cacao incorporate accurate mealybug identification. In this work the efficacy of a CO1-based DNA barcoding approach to species identification was evaluated by screening a range of mealybugs collected from cacao in seven countries. RESULTS: Morphologically similar adult females were characterised by scanning electron microscopy and then, following DNA extraction, were screened with CO1 barcoding markers. A high degree of CO1 sequence homology was observed for all 11 individual haplotypes including those accessions from distinct geographical regions. This has allowed for the design of a High Resolution Melt (HRM) assay capable of rapid identification of the commonly encountered mealybug pests of cacao. CONCLUSIONS: HRM Analysis (HRMA) readily differentiated between mealybug pests of cacao that can not necessarily be identified by conventional morphological analysis. This new approach, therefore, has potential to facilitate breeding for resistance to CSSV and other mealybug transmitted diseases.
Resumo:
Addressing two aspects of morphological awareness – derivational and compound, this study investigates the relationships between morphological awareness and vocabulary and reading comprehension in English-Chinese bilingual primary 3 children in Singapore (N = 76). Comparable tasks in Chinese and English were administered to examine the children’s morphological awareness, vocabulary, and reading comprehension. The results show that morphological awareness is highly related to vocabulary and reading comprehension, with higher correlations between morphological awareness and reading comprehension than between morphological awareness and vocabulary. This indicates that morphological awareness may have direct influence on reading comprehension beyond the mediating effect of vocabulary. Furthermore, the results indicate that children displayed more compound than derivational morphological awareness for Chinese due to the dominance of compound morphology in Chinese. However the children also displayed similar levels of derivational and compound morphological awareness for English despite far more derivatives than compounds in English. The robust cross-linguistic correlations suggest that Chinese compound morphological knowledge plays a facilitating role not only in learning English compounds, but also in learning transparently derived words that do not involve phonological or orthographic shifts.
Resumo:
1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.
Resumo:
A deficit in empathy has been suggested to underlie social behavioural atypicalities in autism. A parallel theoretical account proposes that reduced social motivation (i.e., low responsivity to social rewards) can account for the said atypicalities. Recent evidence suggests that autistic traits modulate the link between reward and proxy metrics related to empathy. Using an evaluative conditioning paradigm to associate high and low rewards with faces, a previous study has shown that individuals high in autistic traits show reduced spontaneous facial mimicry of faces associated with high vs. low reward. This observation raises the possibility that autistic traits modulate the magnitude of evaluative conditioning. To test this, we investigated (a) if autistic traits could modulate the ability to implicitly associate a reward value to a social stimulus (reward learning/conditioning, using the Implicit Association Task, IAT); (b) if the learned association could modulate participants’ prosocial behaviour (i.e., social reciprocity, measured using the cyberball task); (c) if the strength of this modulation was influenced by autistic traits. In 43 neurotypical participants, we found that autistic traits moderated the relationship of social reward learning on prosocial behaviour but not reward learning itself. This evidence suggests that while autistic traits do not directly influence social reward learning, they modulate the relationship of social rewards with prosocial behaviour
Resumo:
Background Children with callous-unemotional (CU) traits, a proposed precursor to adult psychopathy, are characterized by impaired emotion recognition, reduced responsiveness to others’ distress, and a lack of guilt or empathy. Reduced attention to faces, and more specifically to the eye region, has been proposed to underlie these difficulties, although this has never been tested longitudinally from infancy. Attention to faces occurs within the context of dyadic caregiver interactions, and early environment including parenting characteristics has been associated with CU traits. The present study tested whether infants’ preferential tracking of a face with direct gaze and levels of maternal sensitivity predict later CU traits. Methods Data were analyzed from a stratified random sample of 213 participants drawn from a population-based sample of 1233 first-time mothers. Infants’ preferential face tracking at 5 weeks and maternal sensitivity at 29 weeks were entered into a weighted linear regression as predictors of CU traits at 2.5 years. Results Controlling for a range of confounders (e.g., deprivation), lower preferential face tracking predicted higher CU traits (p = .001). Higher maternal sensitivity predicted lower CU traits in girls (p = .009), but not boys. No significant interaction between face tracking and maternal sensitivity was found. Conclusions This is the first study to show that attention to social features during infancy as well as early sensitive parenting predict the subsequent development of CU traits. Identifying such early atypicalities offers the potential for developing parent-mediated interventions in children at risk for developing CU traits.
Resumo:
The aim of this study was to investigate the capacity of three perennial legume species to access sources of varyingly soluble phosphorus (P) and their associated morphological and physiological adaptations. Two Australian native legumes with pasture potential (Cullen australasicum and Kennedia prostrata) and Medicago sativa cv. SARDI 10 were grown in sand under two P levels (6 and 40 µg P g−1) supplied as Ca(H2PO4)2·H2O (Ca-P, highly soluble, used in many fertilizers) or as one of three sparingly soluble forms: Ca10(OH)2(PO4)6 (apatite-P, found in relatively young soils; major constituent of rock phosphate), C6H6O24P6Na12 (inositol-P, the most common form of organic P in soil) and FePO4 (Fe-P, a poorly-available inorganic source of P). All species grew well with soluble P. When 6 µg P g−1 was supplied as sparingly soluble P, plant dry weight (DW) and P uptake were very low for C. australasicum and M. sativa (0.1–0.4 g DW) with the exception of M. sativa supplied with apatite-P (1.5 g). In contrast, K. prostrata grew well with inositol-P (1.0 g) and Fe-P (0.7 g), and even better with apatite-P (1.7 g), similar to that with Ca-P (1.9 g). Phosphorus uptake at 6 µg P g−1 was highly correlated with total root length, total rhizosphere carboxylate content and total rhizosphere acid phosphatase (EC 3.1.3.2) activity. These findings provide strong indications that there are opportunities to utilize local Australian legumes in low P pasture systems to access sparingly soluble soil P and increase perennial legume productivity, diversity and sustainability.