390 resultados para Meteorology in aeronautics.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique is described for the analysis of cloud-resolving model simulations, which allows one to investigate the statistics of the lifecycles of cumulus clouds. Clouds are tracked from timestep-to-timestep within the model run. This allows for a very simple method of tracking, but one which is both comprehensive and robust. An approach for handling cloud splits and mergers is described which allows clouds with simple and complicated time histories to be compared within a single framework. This is found to be important for the analysis of an idealized simulation of radiative-convective equilibrium, in which the moist, buoyant, updrafts (i.e., the convective cores) were tracked. Around half of all such cores were subject to splits and mergers during their lifecycles. For cores without any such events, the average lifetime is 30min, but events can lengthen the typical lifetime considerably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments are performed using an idealized version of an operational forecast model to determine the impact on banded frontal clouds of the strength of deformational forcing, low-level baroclinicity, and model representation of convection. Line convection is initiated along the front, and slantwise bands extend from the top of the line-convection elements into the cold air. This banding is attributed primarily to M adjustment. The cross-frontal spreading of the cold pool generated by the line convection leads to further triggering of upright convection in the cold air that feeds into these slantwise bands. Secondary low-level bands form later in the simulations; these are attributed to the release of conditional symmetric instability. Enhanced deformation strain leads to earlier onset of convection and more coherent line convection. A stronger cold pool is generated, but its speed is reduced relative to that seen in experiments with weaker deformational strain, because of inhibition by the strain field. Enhanced low-level baroclinicity leads to the generation of more inertial instability by line convection (for a given capping height of convection), and consequently greater strength of the slantwise circulations formed by M adjustment. These conclusions are based on experiments without a convective-parametrization scheme. Experiments using the standard or a modified scheme for this model demonstrate known problems with the use of this scheme at the awkward 4 km grid length used in these simulations. Copyright © 2008 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of convectively-generated gravity waves during an episode of deep convection near the coast of Wales are examined in both high resolution mesoscale simulations [with the (UK) Met Oce Unified Model] and in observations from a Mesosphere-Stratosphere-Troposphere (MST) wind profiling Doppler radar. Deep convection reached the tropopause and generated vertically propagating, high frequency waves in the lower stratosphere that produced vertical velocity perturbations O(1 m/s). Wavelet analysis is applied in order to determine the characteristic periods and wavelengths of the waves. In both the simulations and observations, the wavelet spectra contain several distinct preferred scales indicated by multiple spectral peaks. The peaks are most pronounced in the horizontal spectra at several wavelengths less than 50 km. Although these peaks are most clear and of largest amplitude in the highest resolution simulations (with 1 km horizontal grid length), they are also evident in coarser simulations (with 4 km horizontal grid length). Peaks also exist in the vertical and temporal spectra (between approximately 2.5 and 4.5 km, and 10 to 30 minutes, respectively) with good agreement between simulation and observation. Two-dimensional (wavenumber-frequency) spectra demonstrate that each of the selected horizontal scales contains peaks at each of preferred temporal scales revealed by the one- dimensional spectra alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new objective climatology of polar lows in the Nordic (Norwegian and Barents) seas has been derived from a database of diagnostics of objectively identified cyclones spanning the period January 2000 to April 2004. There are two distinct parts to this study: the development of the objective climatology and a characterization of the dynamical forcing of the polar lows identified. Polar lows are an intense subset of polar mesocyclones. Polar mesocyclones are distinguished from other cyclones in the database as those that occur in cold air outbreaks over the open ocean. The difference between the wet-bulb potential temperature at 700 hPa and the sea surface temperature (SST) is found to be an effective discriminator between the atmospheric conditions associated with polar lows and other cyclones in the Nordic seas. A verification study shows that the objective identification method is reliable in the Nordic seas region. After demonstrating success at identifying polar lows using the above method, the dynamical forcing of the polar lows in the Nordic seas is characterized. Diagnostics of the ratio of mid-level vertical motion attributable to quasi-geostrophic forcing from upper and lower levels (U/L ratio) are used to determine the prevalence of a recently proposed category of extratropical cyclogenesis, type C, for which latent heat release is crucial to development. Thirty-one percent of the objectively identified polar low events (36 from 115) exceeded the U/L ratio of 4.0, previously identified as a threshold for type C cyclones. There is a contrast between polar lows to the north and south of the Nordic seas. In the southern Norwegian Sea, the population of polar low events is dominated by type C cyclones. These possess strong convection and weak low-level baroclinicity. Over the Barents and northern Norwegian seas, the well-known cyclogenesis types A and B dominate. These possess stronger low-level baroclinicity and weaker convection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiation schemes in general circulation models currently make a number of simplifications when accounting for clouds, one of the most important being the removal of horizontal inhomogeneity. A new scheme is presented that attempts to account for the neglected inhomogeneity by using two regions of cloud in each vertical level of the model as opposed to one. One of these regions is used to represent the optically thinner cloud in the level, and the other represents the optically thicker cloud. So, along with the clear-sky region, the scheme has three regions in each model level and is referred to as “Tripleclouds.” In addition, the scheme has the capability to represent arbitrary vertical overlap between the three regions in pairs of adjacent levels. This scheme is implemented in the Edwards–Slingo radiation code and tested on 250 h of data from 12 different days. The data are derived from cloud retrievals using radar, lidar, and a microwave radiometer at Chilbolton, southern United Kingdom. When the data are grouped into periods equivalent in size to general circulation model grid boxes, the shortwave plane-parallel albedo bias is found to be 8%, while the corresponding bias is found to be less than 1% using Tripleclouds. Similar results are found for the longwave biases. Tripleclouds is then compared to a more conventional method of accounting for inhomogeneity that multiplies optical depths by a constant scaling factor, and Tripleclouds is seen to improve on this method both in terms of top-of-atmosphere radiative flux biases and internal heating rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data assimilation provides techniques for combining observations and prior model forecasts to create initial conditions for numerical weather prediction (NWP). The relative weighting assigned to each observation in the analysis is determined by its associated error. Remote sensing data usually has correlated errors, but the correlations are typically ignored in NWP. Here, we describe three approaches to the treatment of observation error correlations. For an idealized data set, the information content under each simplified assumption is compared with that under correct correlation specification. Treating the errors as uncorrelated results in a significant loss of information. However, retention of an approximated correlation gives clear benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes to stratospheric sudden warmings (SSWs) over the coming century, as predicted by the Geophysical Fluid Dynamics Laboratory (GFDL) chemistry climate model [Atmospheric Model With Transport and Chemistry (AMTRAC)], are investigated in detail. Two sets of integrations, each a three-member ensemble, are analyzed. The first set is driven with observed climate forcings between 1960 and 2004; the second is driven with climate forcings from a coupled model run, including trace gas concentrations representing a midrange estimate of future anthropogenic emissions between 1990 and 2099. A small positive trend in the frequency of SSWs is found. This trend, amounting to 1 event/decade over a century, is statistically significant at the 90% confidence level and is consistent over the two sets of model integrations. Comparison of the model SSW climatology between the late 20th and 21st centuries shows that the increase is largest toward the end of the winter season. In contrast, the dynamical properties are not significantly altered in the coming century, despite the increase in SSW frequency. Owing to the intrinsic complexity of our model, the direct cause of the predicted trend in SSW frequency remains an open question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore the potential predictability of rapid changes in the Atlantic meridional overturning circulation (MOC) using a coupled global climate model (HadCM3). Rapid changes in the temperature and salinity of surface water in the Nordic Seas, and the flow of dense water through Denmark Strait, are found to be precursors to rapid changes in the model's MOC, with a lead time of around 10 years. The mechanism proposed to explain this potential predictability relies on the development of density anomalies in the Nordic Seas which propagate through Denmark Strait and along the deep western boundary current, affecting the overturning. These rapid changes in the MOC have significant, and widespread, climate impacts which are potentially predictable a few years ahead. Whilst the flow through Denmark Strait is too strong in HadCM3, the presence of such potential predictability motivates the monitoring of water properties in the Nordic Seas and Denmark Strait.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tropospheric response to midlatitude SST anomalies has been investigated through a series of aquaplanet simulations using a high-resolution version of the Hadley Centre atmosphere model (HadAM3) under perpetual equinox conditions. Model integrations show that increases in the midlatitude SST gradient generally lead to stronger storm tracks that are shifted slightly poleward, consistent with changes in the lower-tropospheric baroclinicity. The large-scale atmospheric response is, however, highly sensitive to the position of the SST gradient anomaly relative to that of the subtropical jet in the unperturbed atmosphere. In particular, when SST gradients are increased very close to the subtropical jet, then the Hadley cell and subtropical jet is strengthened while the storm track and eddy-driven jet are shifted equatorward. Conversely, if the subtropical SST gradients are reduced and the midlatitude gradients increased, then the storm track shows a strong poleward shift and a well-separated eddy-driven jet is produced. The sign of the SST anomaly is shown to play a secondary role in determining the overall tropospheric response. These findings are used to provide a new and consistent interpretation of some previous GCM studies concerning the atmospheric response to midlatitude SST anomalies.