124 resultados para Linguistic variations
Resumo:
Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.
Resumo:
Historic geomagnetic activity observations have been used to reveal centennial variations in the open solar flux and the near-Earth heliospheric conditions (the interplanetary magnetic field and the solar wind speed). The various methods are in very good agreement for the past 135 years when there were sufficient reliable magnetic observatories in operation to eliminate problems due to site-specific errors and calibration drifts. This review underlines the physical principles that allow these reconstructions to be made, as well as the details of the various algorithms employed and the results obtained. Discussion is included of: the importance of the averaging timescale; the key differences between “range” and “interdiurnal variability” geomagnetic data; the need to distinguish source field sector structure from heliospherically-imposed field structure; the importance of ensuring that regressions used are statistically robust; and uncertainty analysis. The reconstructions are exceedingly useful as they provide calibration between the in-situ spacecraft measurements from the past five decades and the millennial records of heliospheric behaviour deduced from measured abundances of cosmogenic radionuclides found in terrestrial reservoirs. Continuity of open solar flux, using sunspot number to quantify the emergence rate, is the basis of a number of models that have been very successful in reproducing the variation derived from geomagnetic activity. These models allow us to extend the reconstructions back to before the development of the magnetometer and to cover the Maunder minimum. Allied to the radionuclide data, the models are revealing much about how the Sun and heliosphere behaved outside of grand solar maxima and are providing a means of predicting how solar activity is likely to evolve now that the recent grand maximum (that had prevailed throughout the space age) has come to an end.
Resumo:
This article elucidates the Typological Primacy Model (TPM; Rothman, 2010, 2011, 2013) for the initial stages of adult third language (L3) morphosyntactic transfer, addressing questions that stem from the model and its application. The TPM maintains that structural proximity between the L3 and the L1 and/or the L2 determines L3 transfer. In addition to demonstrating empirical support for the TPM, this article articulates a proposal for how the mind unconsciously determines typological (structural) proximity based on linguistic cues from the L3 input stream used by the parser early on to determine holistic transfer of one previous (the L1 or the L2) system. This articulated version of the TPM is motivated by argumentation appealing to cognitive and linguistic factors. Finally, in line with the general tenets of the TPM, I ponder if and why L3 transfer might obtain differently depending on the type of bilingual (e.g. early vs. late) and proficiency level of bilingualism involved in the L3 process.
Resumo:
BACKGROUND: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. RESULTS: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). CONCLUSIONS: Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.
Resumo:
The purpose of the current article is to support the investigation of linguistic relativity in second language acquisition and sketch methodological and theoretical prerequisites toward developing the domain into a full research program. We identify and discuss three theoretical-methodological components that we believe are needed to succeed in this enterprise. First, we highlight the importance of using nonverbal methods to study linguistic relativity effects in second language (L2) speakers. The use of nonverbal tasks is necessary in order to avoid the circularity that arises when inferences about nonverbal behavior are made on the basis of verbal evidence alone. Second, we identify and delineate the likely cognitive mechanisms underpinning cognitive restructuring in L2 speakers by introducing the theoretical framework of associative learning. By doing so, we demonstrate that the extent and nature of cognitive restructuring in L2 speakers is essentially a function of variation in individual learners’ trajectories. Third, we offer an in-depth discussion of the factors (e.g., L2 proficiency and L2 use) that characterize those trajectories, anchoring them to the framework of associative learning, and reinterpreting their relative strength in predicting L2 speaker cognition
Resumo:
Nowadays the electricity consumption in the residential sector attracts policy and research efforts, in order to propose saving strategies and to attain a better balance between production and consumption, by integrating renewable energy production and proposing suitable demand side management methods. To achieve these objectives it is essential to have real information about household electricity demand profiles in dwellings, highly correlated, among other aspects, with the active occupancy of the homes and to the personal activities carried out in homes by their occupants. Due to the limited information related to these aspects, in this paper, behavioral factors of the Spanish household residents, related to the electricity consumption, have been determined and analyzed, based on data from the Spanish Time Use Surveys, differentiating among the Autonomous Communities and the size of municipalities, or the type of days, weekdays or weekends. Activities involving a larger number of houses are those related to Personal Care, Food Preparation and Washing Dishes. The activity of greater realization at homes is Watching TV, which together with Using PC, results in a high energy demand in an aggregate level. Results obtained enable identify prospective targets for load control and for efficiency energy reduction recommendations to residential consumers.
Resumo:
We analyse the widely-used international/ Zürich sunspot number record, R, with a view to quantifying a suspected calibration discontinuity around 1945 (which has been termed the “Waldmeier discontinuity” [Svalgaard, 2011]). We compare R against the composite sunspot group data from the Royal Greenwich Observatory (RGO) network and the Solar Optical Observing Network (SOON), using both the number of sunspot groups, N{sub}G{\sub}, and the total area of the sunspots, A{sub}G{\sub}. In addition, we compare R with the recently developed interdiurnal variability geomagnetic indices IDV and IDV(1d). In all four cases, linearity of the relationship with R is not assumed and care is taken to ensure that the relationship of each with R is the same before and after the putative calibration change. It is shown the probability that a correction is not needed is of order 10{sup}−8{\sup} and that R is indeed too low before 1945. The optimum correction to R for values before 1945 is found to be 11.6%, 11.7%, 10.3% and 7.9% using A{sub}G{\sub}, N{sub)G{\sub}, IDV, and IDV(1d), respectively. The optimum value obtained by combining the sunspot group data is 11.6% with an uncertainty range 8.1-14.8% at the 2σ level. The geomagnetic indices provide an independent yet less stringent test but do give values that fall within the 2σ uncertainty band with optimum values are slightly lower than from the sunspot group data. The probability of the correction needed being as large as 20%, as advocated by Svalgaard [2011], is shown to be 1.6 × 10{sup}−5{\sup}.
Resumo:
We investigate the relationship between interdiurnal variation geomagnetic activity indices, IDV and IDV(1d), corrected sunspot number, R{sub}C{\sub}, and the group sunspot number R{sub}G{\sub}. R{sub}C{\sub} uses corrections for both the “Waldmeier discontinuity”, as derived in Paper 1 [Lockwood et al., 2014c], and the “Wolf discontinuity” revealed by Leussu et al. [2013]. We show that the simple correlation of the geomagnetic indices with R{sub}C{\sub}{sup}n{\sup} or R{sub}G{\sub}{sup}n{\sup} masks a considerable solar cycle variation. Using IDV(1d) or IDV to predict or evaluate the sunspot numbers, the errors are almost halved by allowing for the fact that the relationship varies over the solar cycle. The results indicate that differences between R{sub}C{\sub} and R{sub}G{\sub} have a variety of causes and are highly unlikely to be attributable to errors in either R{sub}G{\sub} alone, as has recently been assumed. Because it is not known if R{sub}C{\sub} or R{sub}G{\sub} is a better predictor of open flux emergence before 1874, a simple sunspot number composite is suggested which, like R{sub}G{\sub}, enables modelling of the open solar flux for 1610 onwards in Paper 3, but maintains the characteristics of R{sub}C{\sub}.
Resumo:
From the variation of near-Earth interplanetary conditions, reconstructed for the mid-19th century to the present day using historic geomagnetic activity observations, Lockwood and Owens [2014] have suggested that Earth remains within a broadened streamer belt during solar cycles when the Open Solar Flux (OSF) is low. From this they propose that the Earth was immersed in almost constant slow solar wind during the Maunder minimum (c. 1650-1710). In this paper, we extend continuity modelling of the OSF to predict the streamer belt width using both group sunspot numbers and corrected international sunspot numbers to quantify the emergence rate of new OSF. The results support the idea that the solar wind at Earth was persistently slow during the Maunder minimum because the streamer belt was broad.
Resumo:
It is widely thought that changes in both the surface buoyancy fluxes and wind stress drive variability in the Atlantic meridional overturning circulation (AMOC), but that they drive variability on different time scales. For example, wind forcing dominates short-term variability through its effects on Ekman currents and coastal upwelling, whereas buoyancy forcing is important for longer time scales (multiannual and decadal). However, the role of the wind forcing on multiannual to decadal time scales is less clear. Here the authors present an analysis of simulations with the Nucleus for European Modelling of the Ocean (NEMO) ocean model with the aim of explaining the important drivers of the zonal density gradient at 26°N, which is directly related to the AMOC. In the experiments, only one of either the wind stress or the buoyancy forcing is allowed to vary in time, whereas the other remains at its seasonally varying climatology. On subannual time scales, variations in the density gradient, and in the AMOC minus Ekman, are driven largely by local wind-forced coastal upwelling at both the western and eastern boundaries. On decadal time scales, buoyancy forcing related to the North Atlantic Oscillation dominates variability in the AMOC. Interestingly, however, it is found that wind forcing also plays a role at longer time scales, primarily impacting the interannual variability through the excitation of Rossby waves in the central Atlantic, which propagate westward to interact with the western boundary, but also by modulating the decadal time-scale response to buoyancy forcing.
Resumo:
In this paper we present the capability of a new network of field mill sensors to monitor the atmospheric electric field at various locations in South America; we also show some early results. The main objective of the new network is to obtain the characteristic Universal Time diurnal curve of the atmospheric electric field in fair weather, known as the Carnegie curve. The Carnegie curve is closely related to the current sources flowing in the Global Atmospheric Electric Circuit so that another goal is the study of this relationship on various time scales (transient/monthly/seasonal/annual). Also, by operating this new network, we may also study departures of the Carnegie curve from its long term average value related to various solar, geophysical and atmospheric phenomena such as the solar cycle, solar flares and energetic charged particles, galactic cosmic rays, seismic activity and specific meteorological events. We then expect to have a better understanding of the influence of these phenomena on the Global Atmospheric Electric Circuit and its time-varying behavior.