83 resultados para Japanese recreational objects
Resumo:
The Sensory Objects project creates multisensory interactive artworks that respond to museum collections and generate alternative ideas for museum interpretation.
Resumo:
Seminar exploring the Sensory Objects Project at the British Museum for 65 delegates.
Resumo:
The Sensory Objects project was represented by co-researchers Judith Appiah and Tim Elson supported by Beverley Agard from the Tower Project, who co-presented with Nic and Kate at ENGAGE 2014 conference in Bristol.
Resumo:
This project engages people with learning disabilities to participate as co-researchers and explore museum interpretation through multisensory workshops using microcontrollers and sensors to enable alternative interactive visitor experiences in museums and heritage sites. This article describes how the project brings together artists, engineers, and experts in multimedia advocacy, as well as people with learning disabilities in the co-design of interactive multisensory objects that replicate or respond to objects of cultural significance in our national collections. Through a series of staged multi-sensory art and electronics workshops, people with learning disabilities explore how the different senses could be utilised to augment existing artefacts or create entirely new ones. The co-researchers employ multimedia advocacy tools to reflect on and to communicate their experiences and findings.
Resumo:
Observers generally fail to recover three-dimensional shape accurately from binocular disparity. Typically, depth is overestimated at near distances and underestimated at far distances [Johnston, E. B. (1991). Systematic distortions of shape from stereopsis. Vision Research, 31, 1351–1360]. A simple prediction from this is that disparity-defined objects should appear to expand in depth when moving towards the observer, and compress in depth when moving away. However, additional information is provided when an object moves from which 3D Euclidean shape can be recovered, be this through the addition of structure from motion information [Richards, W. (1985). Structure from stereo and motion. Journal of the Optical Society of America A, 2, 343–349], or the use of non-generic strategies [Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure? Perception and Psychophysics, 65, 31–47]. Here, we investigated shape constancy for objects moving in depth. We found that to be perceived as constant in shape, objects needed to contract in depth when moving toward the observer, and expand in depth when moving away, countering the effects of incorrect distance scaling (Johnston, 1991). This is a striking example of the failure of shape con- stancy, but one that is predicted if observers neither accurately estimate object distance in order to recover Euclidean shape, nor are able to base their responses on a simpler processing strategy.