90 resultados para Indicators of global mindset
Resumo:
This paper models the determinants of integration in the context of global real estate security markets. Using both local and U.S. Dollar denominated returns, we model conditional correlations across listed real estate sectors and also with the global stock market. The empirical results find that financial factors, such as the relationship with the respective equity market, volatility, the relative size of the real estate sector and trading turnover all play an important role in the degree of integration present. Furthermore, the results highlight the importance of macro-economic variables in the degree of integration present. All four of the macro-economic variables modeled provide at least one significant result across the specifications estimated. Factors such as financial and trade openness, monetary independence and the stability of a country’s currency all contribute to the degree of integration reported.
Resumo:
The development of global magnetospheric models, such as Space Weather Modeling Framework (SWMF), which can accurately reproduce and track space weather processes has high practical utility. We present an interval on 5 June 1998, where the location of the polar cap boundary, or open-closed field line boundary (OCB), can be determined in the ionosphere using a combination of instruments during a period encompassing a sharp northward to southward interplanetary field turning. We present both point- and time-varying comparisons of the observed and simulated boundaries in the ionosphere and find that when using solely the coupled ideal magnetohydrodynamic magnetosphere-ionosphere model, the rate of change of the OCB to a southward turning of the interplanetary field is significantly faster than that computed from the observational data. However, when the inner magnetospheric module is incorporated, the modeling framework both qualitatively, and often quantitatively, reproduces many elements of the studied interval prior to an observed substorm onset. This result demonstrates that the physics of the inner magnetosphere is critical in shaping the boundary between open and closed field lines during periods of southward interplanetary magnetic field (IMF) and provides significant insight into the 3-D time-dependent behavior of the Earth's magnetosphere in response to a northward-southward IMF turning. We assert that during periods that do not include the tens of minutes surrounding substorm expansion phase onset, the coupled SWMF model may provide a valuable and reliable tool for estimating both the OCB and magnetic field topology over a wide range of latitudes and local times.
Resumo:
Global NDVI data are routinely derived from the AVHRR, SPOT-VGT, and MODIS/Terra earth observation records for a range of applications from terrestrial vegetation monitoring to climate change modeling. This has led to a substantial interest in the harmonization of multisensor records. Most evaluations of the internal consistency and continuity of global multisensor NDVI products have focused on time-series harmonization in the spectral domain, often neglecting the spatial domain. We fill this void by applying variogram modeling (a) to evaluate the differences in spatial variability between 8-km AVHRR, 1-km SPOT-VGT, and 1-km, 500-m, and 250-m MODIS NDVI products over eight EOS (Earth Observing System) validation sites, and (b) to characterize the decay of spatial variability as a function of pixel size (i.e. data regularization) for spatially aggregated Landsat ETM+ NDVI products and a real multisensor dataset. First, we demonstrate that the conjunctive analysis of two variogram properties – the sill and the mean length scale metric – provides a robust assessment of the differences in spatial variability between multiscale NDVI products that are due to spatial (nominal pixel size, point spread function, and view angle) and non-spatial (sensor calibration, cloud clearing, atmospheric corrections, and length of multi-day compositing period) factors. Next, we show that as the nominal pixel size increases, the decay of spatial information content follows a logarithmic relationship with stronger fit value for the spatially aggregated NDVI products (R2 = 0.9321) than for the native-resolution AVHRR, SPOT-VGT, and MODIS NDVI products (R2 = 0.5064). This relationship serves as a reference for evaluation of the differences in spatial variability and length scales in multiscale datasets at native or aggregated spatial resolutions. The outcomes of this study suggest that multisensor NDVI records cannot be integrated into a long-term data record without proper consideration of all factors affecting their spatial consistency. Hence, we propose an approach for selecting the spatial resolution, at which differences in spatial variability between NDVI products from multiple sensors are minimized. This approach provides practical guidance for the harmonization of long-term multisensor datasets.
Resumo:
The process of global deforestation calls for urgent attention, particularly in South America where deforestation rates have failed to decline over the past 20 years. The main direct cause of deforestation is land conversion to agriculture. We combine data from the FAO and the World Bank for six tropical Southern American countries over the period 1970–2006, estimate a panel data model accounting for various determinants of agricultural land expansion and derive elasticities to quantify the effect of the different independent variables. We investigate whether agricultural intensification, in conjunction with governance factors, has been promoting agricultural expansion, leading to a ‘‘Jevons paradox’’. The paradox occurs if an increase in the productivity of one factor (here agricultural land) leads to its increased, rather than decreased, utilization. We find that for high values of our governance indicators a Jevons paradox exists even for moderate levels of agricultural productivity, leading to an overall expansion of agricultural area. Agricultural expansion is also positively related to the level of service on external debt and population growth, while its association with agricultural exports is only moderate. Finally, we find no evidence of an environmental Kuznets curve, as agricultural area is ultimately positively correlated to per-capita income levels.
Resumo:
Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 degrees C above present (approximately 2.7 degrees C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (< 500 m(3) per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 degrees C, whereas indicators of very severe impacts increase unabated beyond 2 degrees C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.
Resumo:
Confidence in projections of global-mean sea level rise (GMSLR) depends on an ability to account for GMSLR during the twentieth century. There are contributions from ocean thermal expansion, mass loss from glaciers and ice sheets, groundwater extraction, and reservoir impoundment. Progress has been made toward solving the “enigma” of twentieth-century GMSLR, which is that the observed GMSLR has previously been found to exceed the sum of estimated contributions, especially for the earlier decades. The authors propose the following: thermal expansion simulated by climate models may previously have been underestimated because of their not including volcanic forcing in their control state; the rate of glacier mass loss was larger than previously estimated and was not smaller in the first half than in the second half of the century; the Greenland ice sheet could have made a positive contribution throughout the century; and groundwater depletion and reservoir impoundment, which are of opposite sign, may have been approximately equal in magnitude. It is possible to reconstruct the time series of GMSLR from the quantified contributions, apart from a constant residual term, which is small enough to be explained as a long-term contribution from the Antarctic ice sheet. The reconstructions account for the observation that the rate of GMSLR was not much larger during the last 50 years than during the twentieth century as a whole, despite the increasing anthropogenic forcing. Semiempirical methods for projecting GMSLR depend on the existence of a relationship between global climate change and the rate of GMSLR, but the implication of the authors' closure of the budget is that such a relationship is weak or absent during the twentieth century.
Resumo:
Mass loss by glaciers has been an important contributor to sea level rise in the past, and is projected to contribute a substantial fraction of total sea level rise during the 21st century. Here, we use a model of the world's glaciers to quantify equilibrium sensitivities of global glacier mass to climate change, and to investigate the role of changes in glacier hypsometry for long-term mass changes. We find that 21st century glacier-mass loss is largely governed by the glacier's response to 20th century climate change. This limits the influence of 21st century climate change on glacier-mass loss, and explains why there are relatively small differences in glacier-mass loss under greatly different scenarios of climate change. The projected future changes in both temperature and precipitation experienced by glaciers are amplified relative to the global average. The projected increase in precipitation partly compensates for the mass loss caused by warming, but this compensation is negligible at higher temperature anomalies since an increasing fraction of precipitation at the glacier sites is liquid. Loss of low-lying glacier area, and more importantly, eventual complete disappearance of glaciers, strongly limit the projected sea level contribution from glaciers in coming centuries. The adjustment of glacier hypsometry to changes in the forcing strongly reduces the rates of global glacier-mass loss caused by changes in global mean temperature compared to rates of mass loss when hypsometric changes are neglected. This result is a second reason for the relatively weak dependence of glacier-mass loss on future climate scenario, and helps explain why glacier-mass loss in the first half of the 20th century was of the same order of magnitude as in the second half of the 20th century, even though the rate of warming was considerably smaller.
Resumo:
The overall global-scale consequences of climate change are dependent on the distribution of impacts across regions, and there are multiple dimensions to these impacts.This paper presents a global assessment of the potential impacts of climate change across several sectors, using a harmonised set of impacts models forced by the same climate and socio-economic scenarios. Indicators of impact cover the water resources, river and coastal flooding, agriculture, natural environment and built environment sectors. Impacts are assessed under four SRES socio-economic and emissions scenarios, and the effects of uncertainty in the projected pattern of climate change are incorporated by constructing climate scenarios from 21 global climate models. There is considerable uncertainty in projected regional impacts across the climate model scenarios, and coherent assessments of impacts across sectors and regions therefore must be based on each model pattern separately; using ensemble means, for example, reduces variability between sectors and indicators. An example narrative assessment is presented in the paper. Under this narrative approximately 1 billion people would be exposed to increased water resources stress, around 450 million people exposed to increased river flooding, and 1.3 million extra people would be flooded in coastal floods each year. Crop productivity would fall in most regions, and residential energy demands would be reduced in most regions because reduced heating demands would offset higher cooling demands. Most of the global impacts on water stress and flooding would be in Asia, but the proportional impacts in the Middle East North Africa region would be larger. By 2050 there are emerging differences in impact between different emissions and socio-economic scenarios even though the changes in temperature and sea level are similar, and these differences are greater in 2080. However, for all the indicators, the range in projected impacts between different climate models is considerably greater than the range between emissions and socio-economic scenarios.
Resumo:
In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth’s atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.
Resumo:
This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a−1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a−1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a−1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a−1; range 13–20 Tg a−1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a−1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.
Resumo:
Global controls on month-by-month fractional burnt area (2000–2005) were investigated by fitting a generalised linear model (GLM) to Global Fire Emissions Database (GFED) data, with 11 predictor variables representing vegetation, climate, land use and potential ignition sources. Burnt area is shown to increase with annual net primary production (NPP), number of dry days, maximum temperature, grazing-land area, grass/shrub cover and diurnal temperature range, and to decrease with soil moisture, cropland area and population density. Lightning showed an apparent (weak) negative influence, but this disappeared when pure seasonal-cycle effects were taken into account. The model predicts observed geographic and seasonal patterns, as well as the emergent relationships seen when burnt area is plotted against each variable separately. Unimodal relationships with mean annual temperature and precipitation, population density and gross domestic product (GDP) are reproduced too, and are thus shown to be secondary consequences of correlations between different controls (e.g. high NPP with high precipitation; low NPP with low population density and GDP). These findings have major implications for the design of global fire models, as several assumptions in current models – most notably, the widely assumed dependence of fire frequency on ignition rates – are evidently incorrect.
Resumo:
Based on a combined internet and mail survey in Germany the independence of indica-tors of trust in public authorities from indicators of attitudes toward genetically modified food is tested. Despite evidence of a link between trust indicators on the one hand and evaluation of benefits and perceived likelihoods of risks, correlation with other factors is found to be moderate on average. But the trust indicators exhibit only a moderate relation with the re-spondents’ preference for either sole public control or a cooperation of public and private bodies in the monitoring of GM food distribution. Instead, age and location in either the New or the Old Lander are found to be significantly related with such preferences.
Resumo:
Simultaneous nadir overpasses (SNOs) of polar-orbiting satellites are most frequent in polar areas but can occur at any latitude when the equatorial crossing times of the satellites become close owing to orbital drift. We use global SNOs of polar orbiting satellites to evaluate the intercalibration of microwave humidity sounders from the more frequent high-latitude SNOs. We have found based on sensitivity analyses that optimal distance and time thresholds for defining collocations are pixel centers less than 5 km apart and time differences less than 300 s. These stringent collocation criteria reduce the impact of highly variable surface or atmospheric conditions on the estimated biases. Uncertainties in the estimated biases are dominated by the combined radiometric noise of the instrument pair. The effects of frequency changes between different versions of the humidity sounders depend on the amount of water vapor in the atmosphere. There are significant scene radiance and thus latitude dependencies in the estimated biases and this has to taken into account while intercalibrating microwave humidity sounders. Therefore the results obtained using polar SNOs will not be representative for moist regions, necessitating the use of global collocations for reliable intercalibration.
Resumo:
To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid- and high-latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1–17°S and 64–78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high-elevation oligotrophic lakes, will likely see range contraction under future anthropogenic-induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio-indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes.
Resumo:
This paper introduces the special issue of Climatic Change on the QUEST-GSI project, a global-scale multi-sectoral assessment of the impacts of climate change. The project used multiple climate models to characterise plausible climate futures with consistent baseline climate and socio-economic data and consistent assumptions, together with a suite of global-scale sectoral impacts models. It estimated impacts across sectors under specific SRES emissions scenarios, and also constructed functions relating impact to change in global mean surface temperature. This paper summarises the objectives of the project and its overall methodology, outlines how the project approach has been used in subsequent policy-relevant assessments of future climate change under different emissions futures, and summarises the general lessons learnt in the project about model validation and the presentation of multi-sector, multi-region impact assessments and their associated uncertainties to different audiences.