77 resultados para In-situ Identification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report simultaneous global monitoring of a patch of ionization and in situ observation of ion upflow at the center of the polar cap region during a geomagnetic storm. Our observations indicate strong fluxes of upwelling O+ ions originating from frictional heating produced by rapid antisunward flow of the plasma patch. The statistical results from the crossings of the central polar cap region by Defense Meteorological Satellite Program F16–F18 from 2010 to 2013 confirm that the field-aligned flow can turn upward when rapid antisunward flows appear, with consequent significant frictional heating of the ions, which overcomes the gravity effect. We suggest that such rapidly moving patches can provide an important source of upwelling ions in a region where downward flows are usually expected. These observations give new insight into the processes of ionosphere-magnetosphere coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein–ligand binding site prediction methods aim to predict, from amino acid sequence, protein–ligand interactions, putative ligands, and ligand binding site residues using either sequence information, structural information, or a combination of both. In silico characterization of protein–ligand interactions has become extremely important to help determine a protein’s functionality, as in vivo-based functional elucidation is unable to keep pace with the current growth of sequence databases. Additionally, in vitro biochemical functional elucidation is time-consuming, costly, and may not be feasible for large-scale analysis, such as drug discovery. Thus, in silico prediction of protein–ligand interactions must be utilized to aid in functional elucidation. Here, we briefly discuss protein function prediction, prediction of protein–ligand interactions, the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping the field. We also discuss, in detail, our cutting-edge web-server method, FunFOLD for the structurally informed prediction of protein–ligand interactions. Furthermore, we provide a step-by-step guide on using the FunFOLD web server and FunFOLD3 downloadable application, along with some real world examples, where the FunFOLD methods have been used to aid functional elucidation.