91 resultados para In situ hybridisation
Resumo:
We present a summary of the principal physical and optical properties of aerosol particles using the FAAM BAE-146 instrumented aircraft during ADRIEX between 27 August and 6 September 2004, augmented by sunphotometer, lidar and satellite retrievals. Observations of anthropogenic aerosol, principally from industrial sources, were concentrated over the northern Adriatic Sea and over the Po Valley close to the aerosol sources. An additional flight was also carried out over the Black Sea to compare east and west European pollution. Measurements show the single-scattering albedo of dry aerosol particles to vary considerably between 0.89 and 0.97 at a wavelength of 0.55 μm, with a campaign mean within the polluted lower free troposphere of 0.92. Although aerosol concentrations varied significantly from day to day and during individual days, the shape of the aerosol size distribution was relatively consistent through the experiment, with no detectable change observed over land and over sea. There is evidence to suggest that the pollution aerosol within the marine boundary layer was younger than that in the elevated layer. Trends in the aerosol volume distribution show consistency with multiple-site AERONET radiometric observations. The aerosol optical depths derived from aircraft measurements show a consistent bias to lower values than both the AERONET and lidar ground-based radiometric observations, differences which can be explained by local variations in the aerosol column loading and by some aircraft instrumental artefacts. Retrievals of the aerosol optical depth and fine-mode (<0.5 μm radius) fraction contribution to the optical depth using MODIS data from the Terra and Aqua satellites show a reasonable level of agreement with the AERONET and aircraft measurements.
Resumo:
Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.
Resumo:
Electrified aerosols have been observed in the lower troposphere and in the mesosphere, but have never been detected in the stratosphere and upper troposphere. We present measurements of aerosols obtained during a balloon flight to an altitude of 24 km. The measurements were per- formed with an improved version of the Stratospheric and Tropospheric Aerosol Counter (STAC) aerosol counter dedi- cated to the search for charged aerosols. It is found that most of the aerosols are charged in the upper troposphere for altitudes below 10 km and in the stratosphere for altitudes above 20 km. Conversely, the aerosols seem to be uncharged between 10 km and 20 km. Model calculations are used to quantify the electrification of the aerosols with a stratospheric aerosol–ion model. The percentages of charged aerosols obtained with model calculations are in excellent agreement with the observations below 10 km and above 20 km. However, the model cannot reproduce the absence of electrification found in the lower stratosphere, as the processes leading to neutralisation in this altitude range are unknown. The presence of sporadic transient layers of electrified aerosol in the upper troposphere and in the stratosphere could have significant implications for sprite formation
Resumo:
The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere towards dawn and out of the ionosphere towards dusk, linked by a westward electrojet. We use multi-spacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 Jan 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft travelled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal sub-structure on scales of 100~km at altitudes of 4,000-7,000~km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120-240~s after Cluster 4 at 1,300-2,000~km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the pre-onset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs) we conclude that significant questions remain for the explanation of SCW structuring by BBF driven ``wedgelets". Our results therefore represent constraints on future modelling and theoretical frameworks on the generation of the SCW.
Resumo:
Enantioselective heterogeneous hydrogenation of Cdouble bond; length as m-dashO bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no “particle size effect” on the adsorption mode of the tartaric acid in the particle size range ~ 90–~ 300 nm.
Resumo:
A variety of foods have been implicated in symptoms of patients with Irritable Bowel Syndrome (IBS) but wheat products are most frequently cited by patients as a trigger. Our aim was to investigate the effects of breads, which were fermented for different lengths of time, on the colonic microbiota using in vitro batch culture experiments. A set of in vitro anaerobic culture systems were run over a period of 24 h using faeces from 3 different IBS donors (Rome Criteria–mainly constipated) and 3 healthy donors. Changes in gut microbiota during a time course were identified by fluorescence in situ hybridisation (FISH), whilst the small -molecular weight metabolomic profile was determined by NMR analysis. Gas production was separately investigated in non pH-controlled, 36 h batch culture experiments. Numbers of bifidobacteria were higher in healthy subjects compared to IBS donors. In addition, the healthy donors showed a significant increase in bifidobacteria (P<0.005) after 8 h of fermentation of a bread produced using a sourdough process (type C) compared to breads produced with commercial yeasted dough (type B) and no time fermentation (Chorleywood Breadmaking process) (type A). A significant decrease of δ-Proteobacteria and most Gemmatimonadetes species was observed after 24 h fermentation of type C bread in both IBS and healthy donors. In general, IBS donors showed higher rates of gas production compared to healthy donors. Rates of gas production for type A and conventional long fermentation (type B) breads were almost identical in IBS and healthy donors. Sourdough bread produced significantly lower cumulative gas after 15 h fermentation as compared to type A and B breads in IBS donors but not in the healthy controls. In conclusion, breads fermented by the traditional long fermentation and sourdough are less likely to lead to IBS symptoms compared to bread made using the Chorleywood Breadmaking Process.
Resumo:
The use of dietary intervention in the elderly in order to beneficially modulate their gut microbiota has not been extensively studied. The influence of two probiotics (Bifidobacterium longum and Lactobacillus fermentum) and two prebiotics [isomaltooligosaccharides (IMO) and short-chain fructooligosaccharides (FOS)], individually and in synbiotic combinations (B. longum with IMO, L. fermentum with FOS) on the gut microbiota of elderly individuals was investigated using faecal batch cultures and three-stage continuous culture systems. Population changes of major bacterial groups were enumerated using fluorescent in situ hybridisation (FISH). B. longum and IMO alone significantly increased the Bifidobacterium count after 5 and 10 h of fermentation and their synbiotic combination significantly decreased the Bacteroides count after 5 h of fermentation. L. fermentum and FOS alone significantly increased the Bifidobacterium count after 10 h and 5, 10 and 24 h of fermentation respectively. B. longum with IMO as well as B. longum and IMO alone significantly increased acetic acid concentration during the fermentation in batch cultures. In the three-stage continuous culture systems, both synbiotic combinations increased the Bifidobacterium and Lactobacillus count in the third vessel representing the distal colon. In addition, the synbiotic combination of L. fermentum with scFOS resulted in a significant increase in the concentration of acetic acid. The results show that the elderly gut microbiota can be modulated in vitro with the appropriate pro-, pre- and synbiotics.
Resumo:
The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides–Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.
Resumo:
Cell wall polysaccharides of wheat and rice endosperm are an important source of dietary fibre. Monoclonal antibodies specific to cell wall polysaccharides were used to determine polysaccharide dynamics during the development of both wheat and rice grain. Wheat and rice grain present near synchronous developmental processes and significantly different endosperm cell wall compositions, allowing the localisation of these polysaccharides to be related to developmental changes. Arabinoxylan (AX) and mixed-linkage glucan (MLG) have analogous cellular locations in both species, with deposition of AX and MLG coinciding with the start of grain filling. A glucuronoxylan (GUX) epitope was detected in rice, but not wheat endosperm cell walls. Callose has been reported to be associated with the formation of cell wall outgrowths during endosperm cellularisation and xyloglucan is here shown to be a component of these anticlinal extensions, occurring transiently in both species. Pectic homogalacturonan (HG) was abundant in cell walls of maternal tissues of wheat and rice grain, but only detected in endosperm cell walls of rice in an unesterified HG form. A rhamnogalacturonan-I (RG-I) backbone epitope was observed to be temporally regulated in both species, detected in endosperm cell walls from 12 DAA in rice and 20 DAA in wheat grain. Detection of the LM5 galactan epitope showed a clear distinction between wheat and rice, being detected at the earliest stages of development in rice endosperm cell walls, but not detected in wheat endosperm cell walls, only in maternal tissues. In contrast, the LM6 arabinan epitope was detected in both species around 8 DAA and was transient in wheat grain, but persisted in rice until maturity.
Resumo:
This placebo-controlled, randomised, double-blind, cross-over human feeding study aimed to determine the prebiotic effect of agave fructans. A total of thirty-eight volunteers completed this trial. The treatment consisted of 3 weeks' supplementation with 5 g/d of prebiotic agave fructan (Predilife) or equivalent placebo (maltodextrin), followed by a 2-week washout period following which subjects were crossed over to alternate the treatment arm for 3 weeks followed by a 2-week washout. Faecal samples were collected at baseline, on the last day of treatment (days 22 and 58) and washout (days 36 and 72), respectively. Changes in faecal bacterial populations, SCFA and secretory IgA were assessed using fluorescent in situ hybridisation, GC and ELISA, respectively. Bowel movements, stool consistencies, abdominal comfort and mood changes were evaluated by a recorded daily questionnaire. In parallel, the effect of agave fructans on different regions of the colon using a three-stage continuous culture simulator was studied. Predilife significantly increased faecal bifidobacteria (log10 9·6 (sd 0·4)) and lactobacilli (log10 7·7 (sd 0·8)) compared with placebo (log10 9·2 (sd 0·4); P = 0·00) (log10 7·4 (sd 0·7); P = 0·000), respectively. No change was observed for other bacterial groups tested, SCFA, secretory IgA, and PGE2 concentrations between the treatment and placebo. Denaturing gradient gel electrophoresis analysis indicated that bacterial communities were randomly dispersed and no significant differences were observed between Predilife and placebo treatments. The in vitro models showed similar increases in bifidobacterial and lactobacilli populations to that observed with the in vivo trial. To conclude, agave fructans are well tolerated in healthy human subjects and increased bifidobacteria and lactobacilli numbers in vitro and in vivo but did not influence other products of fermentation
Resumo:
Near ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) is used to study the chemical state of methane oxidation catalysts in-situ. Al2O3{supported Pd catalysts are prepared with different particle sizes ranging from 4 nm to 10 nm. These catalysts were exposed to conditions similar to those used in the partial oxidation of methane (POM) to syn-gas and simultaneously monitored by NAP-XPS and mass spectrometry. NAP-XPS data show changes in the oxidation state of the palladium as the temperature in- creases, from metallic Pd0 to PdO, and back to Pd0. Mass spectrometry shows an increase in CO production whilst the Pd is in the oxide phase, and the metal is reduced back under presence of newly formed H2. A particle size effect is observed, such that CH4 conversion starts at lower temperatures with larger sized particles from 6 nm to 10 nm. We find that all nanoparticles begin CH4 conversion at lower temperatures than polycrystalline Pd foil.
Resumo:
During the international FRAMZY expedition in March 2002 in-situ observations of Fram Strait cyclones were made by aircraft, ship and automatic buoys in order to study the interaction between cyclones and sea ice. The atmospheric characteristics of the observed cyclones are presented in this paper. The cyclones were generated in the baroclinic zone at the ice edge and moved NNE-ward along the ice edge. This was supported by warm air advection from WSW by an upper-level wave. The cyclones were rather small (diameter 200– 700 km) and shallow (1–1.5 km e-folding height for the horizontal pressure and temperature difference) with life times between 12 and 36 hours. In spite of the small space and time scales, remarkable extremes were observed within the cyclones. Winds reached maxima above 20 ms−1 lasting for only a few hours. The transition from the cold to the advancing warm air over sea ice occurred within narrow (5–30 km) frontal zones in which vorticity and convergence reached maxima on the order of 10−3 s−1. It is discussed whether the sea ice in spite of its inertia is able to react on these strong sub cyclone-scale processes and, thus, these processes have to be taken into account in models in order to simulate the cyclone-sea ice interaction properly.
Resumo:
This study evaluated the use of Pluronic F127 and Pluronic F68 as excipients for formulating in situ gelling systems for ocular drug delivery. Thermal transitions have been studied in aqueous solutions of Pluronic F127, Pluronic F68 as well as their binary mixtures using differential scanning calorimetry, rheological measurements, and dynamic light scattering. It was established that the formation of transparent gels at physiologically relevant temperatures is observed only in the case of 20 wt % of Pluronic F127. The addition of Pluronic F68 to Pluronic F127 solutions increases the gelation temperature of binary formulation to above physiological range of temperatures. The biocompatibility evaluation of these formulations using slug mucosa irritation assay and bovine corneal erosion studies revealed that these polymers and their combinations do not cause significant irritation. In vitro drug retention study on glass surfaces and freshly excised bovine cornea showed superior performance of 20 wt % Pluronic F127 compared to other formulations. In addition, in vivo studies in rabbits demonstrated better retention performance of 20 wt % Pluronic F127 compared to Pluronic F68. These results confirmed that 20 wt % Pluronic F127 offers an attractive ocular formulation that can form a transparent gel in situ under physiological conditions with minimal irritation.