79 resultados para Hooking up


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of three orthogonally tagged phosphine reagents to assist chemical work-up via phase-switch scavenging in conjunction with a modular flow reactor is described. These techniques (acidic, basic and Click chemistry) are used to prepare various amides and tri-substituted guanidines from in situ generated iminophosphoranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – Progress in retrofitting the UK's commercial properties continues to be slow and fragmented. New research from the UK and USA suggests that radical changes are needed to drive large-scale retrofitting, and that new and innovative models of financing can create new opportunities. The purpose of this paper is to offer insights into the terminology of retrofit and the changes in UK policy and practice that are needed to scale up activity in the sector. Design/methodology/approach – The paper reviews and synthesises key published research into commercial property retrofitting in the UK and USA and also draws on policy and practice from the EU and Australia. Findings – The paper provides a definition of “retrofit”, and compares and contrasts this with “refurbishment” and “renovation” in an international context. The paper summarises key findings from recent research and suggests that there are a number of policy and practice measures which need to be implemented in the UK for commercial retrofitting to succeed at scale. These include improved funding vehicles for retrofit; better transparency in actual energy performance; and consistency in measurement, verification and assessment standards. Practical implications – Policy and practice in the UK needs to change if large-scale commercial property retrofit is to be rolled out successfully. This requires mandatory legislation underpinned by incentives and penalties for non-compliance. Originality/value – This paper synthesises recent research to provide a set of policy and practice recommendations which draw on international experience, and can assist on implementation in the UK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in hardware technologies allow to capture and process data in real-time and the resulting high throughput data streams require novel data mining approaches. The research area of Data Stream Mining (DSM) is developing data mining algorithms that allow us to analyse these continuous streams of data in real-time. The creation and real-time adaption of classification models from data streams is one of the most challenging DSM tasks. Current classifiers for streaming data address this problem by using incremental learning algorithms. However, even so these algorithms are fast, they are challenged by high velocity data streams, where data instances are incoming at a fast rate. This is problematic if the applications desire that there is no or only a very little delay between changes in the patterns of the stream and absorption of these patterns by the classifier. Problems of scalability to Big Data of traditional data mining algorithms for static (non streaming) datasets have been addressed through the development of parallel classifiers. However, there is very little work on the parallelisation of data stream classification techniques. In this paper we investigate K-Nearest Neighbours (KNN) as the basis for a real-time adaptive and parallel methodology for scalable data stream classification tasks.