262 resultados para GOES (Meteorological satellite)
Resumo:
Eight years of cloud properties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are presented. The relatively high spectral resolution of these instruments in the infrared allows especially reliable cirrus identification day and night. This dataset therefore provides complementary information to the International Satellite Cloud Climatology Project (ISCCP). According to this dataset, cirrus clouds cover about 27% of the earth and 45% of the Tropics, whereas ISCCP reports 19% and 25%, respectively. Both global datasets agree within 5% on the amount of single-layer low clouds, at 30%. From 1987 to 1995, global cloud amounts remained stable to within 2%. The seasonal cycle of cloud amount is in general stronger than its diurnal cycle and it is stronger than the one of effective cloud amount, the latter the relevant variable for radiative transfer. Maximum effective low cloud amount over ocean occurs in winter in SH subtropics in the early morning hours and in NH midlatitudes without diurnal cycle. Over land in winter the maximum is in the early afternoon, accompanied in the midlatitudes by thin cirrus. Over tropical land and in the other regions in summer, the maximum of mesoscale high opaque clouds occurs in the evening. Cirrus also increases during the afternoon and persists during night and early morning. The maximum of thin cirrus is in the early afternoon, then decreases slowly while cirrus and high opaque clouds increase. TOVS extends information of ISCCP during night, indicating that high cloudiness, increasing during the afternoon, persists longer during night in the Tropics and subtropics than in midlatitudes. A comparison of seasonal and diurnal cycle of high cloud amount between South America, Africa, and Indonesia during boreal winter has shown strong similarities between the two land regions, whereas the Indonesian islands show a seasonal and diurnal behavior strongly influenced by the surrounding ocean. Deeper precipitation systems over Africa than over South America do not seem to be directly reflected in the horizontal coverage and mesoscale effective emissivity of high clouds.
Resumo:
Real-time rainfall monitoring in Africa is of great practical importance for operational applications in hydrology and agriculture. Satellite data have been used in this context for many years because of the lack of surface observations. This paper describes an improved artificial neural network algorithm for operational applications. The algorithm combines numerical weather model information with the satellite data. Using this algorithm, daily rainfall estimates were derived for 4 yr of the Ethiopian and Zambian main rainy seasons and were compared with two other algorithms-a multiple linear regression making use of the same information as that of the neural network and a satellite-only method. All algorithms were validated against rain gauge data. Overall, the neural network performs best, but the extent to which it does so depends on the calibration/validation protocol. The advantages of the neural network are most evident when calibration data are numerous and close in space and time to the validation data. This result emphasizes the importance of a real-time calibration system.
Resumo:
Ozone and temperature profiles from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been assimilated, using three-dimensional variational assimilation, into a stratosphere troposphere version of the Met Office numerical weather-prediction system. Analyses are made for the month of September 2002, when there was an unprecedented split in the southern hemisphere polar vortex. The analyses are validated against independent ozone observations from sondes, limb-occultation and total column ozone satellite instruments. Through most of the stratosphere, precision varies from 5 to 15%, and biases are 15% or less of the analysed field. Problems remain in the vortex and below the 60 hPa. level, especially at the tropopause where the analyses have too much ozone and poor agreement with independent data. Analysis problems are largely a result of the model rather than the data, giving confidence in the MIPAS ozone retrievals, though there may be a small high bias in MIPAS ozone in the lower stratosphere. Model issues include an excessive Brewer-Dobson circulation, which results both from known problems with the tracer transport scheme and from the data assimilation of dynamical variables. The extreme conditions of the vortex split reveal large differences between existing linear ozone photochemistry schemes. Despite these issues, the ozone analyses are able to successfully describe the ozone hole split and compare well to other studies of this event. Recommendations are made for the further development of the ozone assimilation system.
Resumo:
[ 1] The European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA-40) ozone and water vapor reanalysis fields during the 1990s have been compared with independent satellite data from the Halogen Occultation Experiment (HALOE) and Microwave Limb Sounder (MLS) instruments on board the Upper Atmosphere Research Satellite (UARS). In addition, ERA-40 has been compared with aircraft data from the Measurements of Ozone and Water Vapour by Airbus In-Service Aircraft (MOZAIC) program. Overall, in comparison with the values derived from the independent observations, the upper stratosphere in ERA-40 has about 5 - 10% more ozone and 15 - 20% less water vapor. This dry bias in the reanalysis appears to be global and extends into the middle stratosphere down to 40 hPa. Most of the discrepancies and seasonal variations between ERA-40 and the independent observations occur within the upper troposphere over the tropics and the lower stratosphere over the high latitudes. ERA-40 reproduces a weaker Antarctic ozone hole, and of less vertical extent, than the independent observations; values in the ozone maximum in the tropical stratosphere are lower for the reanalysis. ERA-40 mixing ratios of water vapor are considerably larger than those for MOZAIC, typically by 20% in the tropical upper troposphere, and they may exceed 60% in the lower stratosphere over high latitudes. The results imply that the Brewer-Dobson circulation in the ECMWF reanalysis system is too fast, as is also evidenced by deficiencies in the way ERA-40 reproduces the water vapor "tape recorder'' signal in the tropical stratosphere. Finally, the paper examines the biases and their temporal variation during the 1990s in the way ERA-40 compares to the independent observations. We also discuss how the evaluation results depend on the instrument used, as well as on the version of the data.