79 resultados para Função de Green
Resumo:
In this paper we investigate variations in the adoption of LEED-certified commercial buildings across 174 core-based statistical areas in the United States. Drawing upon a unique database and using a robust analytical framework, the determinants of the proportion LEED-certified space are modeled. We find that, despite high growth rates, LEED-certified stock accounts for a relatively small proportion of the total commercial stock. The average proportion is less than 1%. A further contribution of the paper is that our concentration measure avoids the biases associated with simple percentage measures that were used in previous studies of this topic. Strongest predictors of the proportion of LEED-certified commercial space in a local market are market size, educational attainment and economic growth. In terms of policy effectiveness, it is found that only a mandatory requirement to obtain LEED certification for new buildings has a significant positive effect on market penetration.
Resumo:
As the climate warms, heat waves (HW) are projected to be more intense and to last longer, with serious implications for public health. Urban residents face higher health risks because urban heat islands (UHIs) exacerbate HW conditions. One strategy to mitigate negative impacts of urban thermal stress is the installation of green roofs (GRs) given their evaporative cooling effect. However, the effectiveness of GRs and the mechanisms by which they have an effect at the scale of entire cities are still largely unknown. The Greater Beijing Region (GBR) is modeled for a HW scenario with the Weather Research and Forecasting (WRF) model coupled with a state-of-the-art urban canopy model (PUCM) to examine the effectiveness of GRs. The results suggest GR would decrease near-surface air temperature (ΔT2max = 2.5 K) and wind speed (ΔUV10max = 1.0 m s-1) but increase atmospheric humidity (ΔQ2max = 1.3 g kg-1). GRs are simulated to lessen the overall thermal stress as indicated by apparent temperature (ΔAT2max = 1.7 °C). The modifications by GRs scale almost linearly with the fraction of the surface they cover. Investigation of the surface-atmosphere interactions indicate that GRs with plentiful soil moisture dissipate more of the surface energy as latent heat flux and subsequently inhibit the development of the daytime planetary boundary layer (PBL). This causes the atmospheric heating through entrainment at the PBL top to be decreased. Additionally, urban GRs modify regional circulation regimes leading to decreased advective heating under HW.
Resumo:
Background - Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too-generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level– little consideration is given to the composition of the plant-communities, yet this is what ultimately defines extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more-fully in identifying those plants that promote various services. Scope - Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. Conclusions – Although research is in its infancy, data is being generated that relates plant traits to specific services; thereby helping identify genotypes that optimise service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few ‘functional’ genotypes. Therefore, further information is required on how to design plant communities where the plants identified:- a/ provide more than a single benefit (multi-functionality) b/ complement each other in maximising the range of benefits that can be delivered in one location and c/ continue to maintain public acceptance through diversity. The identification/development of functional landscape plants is an exciting and potentially high impact arena for plant science.