109 resultados para Full Clover Leaf Node


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olive oil, an important component of the Mediterranean diet, is rich in polyphenols and is known to possess positive health effects relative to other dietary fats. In addition, the leaves of the olive plant (Olea europaea) contain similar phenolics (oleuropein, luteolin-7-glucoside, apigenin-7-glucoside, verbascoside and hydroxytyrosol) to those of olives and olive oil, although at higher concentrations. For example, the most abundant is the secoiridoid, oleuropein, representing 1–14% of olive leaf weight vs. 0.005–0.12% in olive oil. Although currently considered a waste product of the olive oil industry, recent research has suggested beneficial effects of phenolic-rich olive leaf extracts (OLE) in modifying cardiovascular risk biomarkers such as blood pressure, hyperglycaemia, oxidative stress and inflammation, as well as improving vascular function and lipid profiles. Despite this, data regarding the biological actions of OLE has mostly derived from animal, in vitro and ex vivo studies, with limited evidence deriving from human trials. Although the absorption and metabolism of olive oil phenolics has been investigated, less is known about the bioavailability of phenolics from OLE, limiting the interpretation of existing in vitro and ex vivo data. The current review will begin by describing the phenolic composition of olive leaves in comparison with that of the better studied olive oil. It will then review the effects of OLE on cardiovascular risk factors, covering both animal and human studies and will end by considering potential mechanisms of action

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of powdery mildew development on photosynthesis, chlorophyll fluorescence, leaf chlorophyll and carotenoid concentrations on three woody plants frequently planted in urban environments was studied. Rates of photosynthetic CO2 fixation were rapidly reduced in two of the three genotypes tested prior to visible signs of infection. Effects on chlorophyll fluorescence (Fo, Fv/Fo, Fv/Fm), leaf chlorophyll and carotenoid content were not manifest until >25 per cent of the leaf area was observed to be covered by mycelial growth indicating reduced photo-synthetic rates during the early stages of infection were not due to degradation of the leaf chloroplast structure. Observation of the fluorescence transient (OJIP curves) showed powdery mildew infection impairs photosynthetic electron transport system by reducing the size but not heterogeneity of the plastoquninone pool, effecting both the acceptor and donor side of photosystem II. Impairment of the photosynthetic electron transport system was reflected by reduced values of a performance index used in this investigation as a measure of photochemical events within photosystem II electron transport. In addition interpretation of the fluorescence data indicated powdery mildew infection may impair the photo-protective process that facilitates the dissipation of excess energy within leaf tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase shift full bridge (PSFB) converter allows high efficiency power conversion at high frequencies through zero voltage switching (ZVS); the parasitic drain-to-source capacitance of the MOSFET is discharged by a resonant inductance before the switch is gated resulting in near zero turn-on switching losses. Typically, an extra inductance is added to the leakage inductance of a transformer to form the resonant inductance necessary to charge and discharge the parasitic capacitances of the PSFB converter. However, many PSFB models do not consider the effects of the magnetizing inductance or dead-time in selecting the resonant inductance required to achieve ZVS. The choice of resonant inductance is crucial to the ZVS operation of the PSFB converter. Incorrectly sized resonant inductance will not achieve ZVS or will limit the load regulation ability of the converter. This paper presents a unique and accurate equation for calculating the resonant inductance required to achieve ZVS over a wide load range incorporating the effects of the magnetizing inductance and dead-time. The derived equations are validated against PSPICE simulations of a PSFB converter and extensive hardware experimentations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pests that have a root-feeding larval stage often cause the most sustained damage to plants because their attrition remains largely unseen, preventing early diagnosis and treatment. Characterising movement and dispersal patterns of subterranean insects is inherently difficult due to the difficulty in observing their behaviour. Our understanding of dispersal and movement patterns of soil-dwelling insects is therefore limited compared to above ground insect pests and tends to focus on vertical movements within the soil profile or assessments of coarse movement patterns taken from soil core measurements in the field. The objective of this study was to assess how the dispersal behaviour of the clover root weevil (CRW), Sitona lepidus larvae was affected by differing proportions of host (clover) and non-host (grass) plants under different soil water contents (SWC). This was undertaken in experimental mini-swards that allowed us to control plant community structure and soil water content. CRW larval survival was not affected either by white clover content or planting pattern or SWC in either experiment; however, lower clover composition in the sward resulted in CRW larvae dispersing further from where they hatched. Because survival was the same regardless of clover density, the proportion of infested plants was highest in sward boxes with the fewest clover plants (i.e. the low host plant density). Thus, there is potential for clover plants over a larger area to be colonised when the clover content of the sward is low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil-dwelling insect herbivores are significant pests in many managed ecosystems. Because eggs and larvae are difficult to observe, mathematical models have been developed to predict life-cycle events occurring in the soil. To date, these models have incorporated very little empirical information about how soil and drought conditions interact to shape these processes. This study investigated how soil temperature (10, 15, 20 and 25 °C), water content (0.02 (air dried), 0.10 and 0.25 g g−1) and pH (5, 7 and 9) interactively affected egg hatching and early larval lifespan of the clover root weevil (Sitona lepidus Gyllenhal, Coleoptera: Curculionidae). Eggs developed over 3.5 times faster at 25 °C compared with 10 °C (hatching after 40.1 and 11.5 days, respectively). The effect of drought on S. lepidus eggs was investigated by exposing eggs to drought conditions before wetting the soil (2–12 days later) at four temperatures. No eggs hatched in dry soil, suggesting that S. lepidus eggs require water to remain viable. Eggs hatched significantly sooner in slightly acidic soil (pH 5) compared with soils with higher pH values. There was also a significant interaction between soil temperature, pH and soil water content. Egg viability was significantly reduced by exposure to drought. When exposed to 2–6 days of drought, egg viability was 80–100% at all temperatures but fell to 50% after 12 days exposure at 10 °C and did not hatch at all at 20 °C and above. Drought exposure also increased hatching time of viable eggs. The effects of soil conditions on unfed larvae were less influential, except for soil temperature which significantly reduced larval longevity by 57% when reared at 25 °C compared with 10 °C (4.1 and 9.7 days, respectively). The effects of soil conditions on S. lepidus eggs and larvae are discussed in the context of global climate change and how such empirically based information could be useful for refining existing mathematical models of these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full-waveform laser scanning data acquired with a Riegl LMS-Q560 instrument were used to classify an orange orchard into orange trees, grass and ground using waveform parameters alone. Gaussian decomposition was performed on this data capture from the National Airborne Field Experiment in November 2006 using a custom peak-detection procedure and a trust-region-reflective algorithm for fitting Gauss functions. Calibration was carried out using waveforms returned from a road surface, and the backscattering coefficient c was derived for every waveform peak. The processed data were then analysed according to the number of returns detected within each waveform and classified into three classes based on pulse width and c. For single-peak waveforms the scatterplot of c versus pulse width was used to distinguish between ground, grass and orange trees. In the case of multiple returns, the relationship between first (or first plus middle) and last return c values was used to separate ground from other targets. Refinement of this classification, and further sub-classification into grass and orange trees was performed using the c versus pulse width scatterplots of last returns. In all cases the separation was carried out using a decision tree with empirical relationships between the waveform parameters. Ground points were successfully separated from orange tree points. The most difficult class to separate and verify was grass, but those points in general corresponded well with the grass areas identified in the aerial photography. The overall accuracy reached 91%, using photography and relative elevation as ground truth. The overall accuracy for two classes, orange tree and combined class of grass and ground, yielded 95%. Finally, the backscattering coefficient c of single-peak waveforms was also used to derive reflectance values of the three classes. The reflectance of the orange tree class (0.31) and ground class (0.60) are consistent with published values at the wavelength of the Riegl scanner (1550 nm). The grass class reflectance (0.46) falls in between the other two classes as might be expected, as this class has a mixture of the contributions of both vegetation and ground reflectance properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the acquisition of syntax in L2 grammars. We tested adult L2 speakers of Spanish (English L1) on the feature specification of T(ense), which is different in English and Spanish in so-called subject-to-subject raising structures. We present experimental results with the verb parecer “to seem/to appear” in different tenses, with and without experiencers, and with Tense Phrase (TP), verb phrase (vP) and Adjectival Phrase (AP) complements. The results show that advanced L2 learners can perform just like native Spanish speakers regarding grammatical knowledge in this domain, although the subtle differences between both languages are not explicitly taught. We argue that these results support Full Access approaches to Universal Grammar (UG) in L2 acquisition, by providing evidence that uninterpretable syntactic features can be learned in adult L2, even when such features are not directly instantiated in the same grammatical domain in the L1 grammar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The likelihood that continuing greenhouse-gas emissions will lead to an unmanageable degree of climate change [1] has stimulated the search for planetary-scale technological solutions for reducing global warming [2] (“geoengineering”), typically characterized by the necessity for costly new infrastructures and industries [3]. We suggest that the existing global infrastructure associated with arable agriculture can help, given that crop plants exert an important influence over the climatic energy budget 4 and 5 because of differences in their albedo (solar reflectivity) compared to soils and to natural vegetation [6]. Specifically, we propose a “bio-geoengineering” approach to mitigate surface warming, in which crop varieties having specific leaf glossiness and/or canopy morphological traits are specifically chosen to maximize solar reflectivity. We quantify this by modifying the canopy albedo of vegetation in prescribed cropland areas in a global-climate model, and thereby estimate the near-term potential for bio-geoengineering to be a summertime cooling of more than 1°C throughout much of central North America and midlatitude Eurasia, equivalent to seasonally offsetting approximately one-fifth of regional warming due to doubling of atmospheric CO2[7]. Ultimately, genetic modification of plant leaf waxes or canopy structure could achieve greater temperature reductions, although better characterization of existing intraspecies variability is needed first.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an in-depth critical discussion and derivation of a detailed small-signal analysis of the Phase-Shifted Full-Bridge (PSFB) converter. Circuit parasitics, resonant inductance and transformer turns ratio have all been taken into account in the evaluation of this topology’s open-loop control-to-output, line-to-output and load-to-output transfer functions. Accordingly, the significant impact of losses and resonant inductance on the converter’s transfer functions is highlighted. The enhanced dynamic model proposed in this paper enables the correct design of the converter compensator, including the effect of parasitics on the dynamic behavior of the PSFB converter. Detailed experimental results for a real-life 36V-to-14V/10A PSFB industrial application show excellent agreement with the predictions from the model proposed herein.1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Anthropogenic activity has increased the level of atmospheric CO2, which is driving an increase of global temperatures and associated changes in precipitation patterns. At Northern latitudes, one of the likely consequences of global warming is increased precipitation and air humidity. Aims: In this work, the effects of both elevated atmospheric CO2 and increased air humidity on trees commonly growing in northern European forests were assessed. Methods: The work was carried out under field conditions by using Free Air Carbon dioxide Enrichment (FACE) and Free Air Humidity Manipulation (FAHM) systems. Leaf litter fall was measured over 4 years (FACE) or 5 years (FAHM) to determine the effects of FACE and FAHM on leaf phenology. Results: Increasing air humidity delayed leaf litter fall in Betula pendula, but not in Populus tremula × tremuloides. Similarly, under elevated atmospheric CO2, leaf litter fall was delayed in Betula pendula, but not in Alnus glutinosa. Increased CO2 appeared to interact with periods of low precipitation in summer and high ozone levels during these periods to effect leaf fall. Conclusions: This work shows that increased CO2 and humidity delay leaf fall, but this effect is species specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the origin and evolution of the Sun’s open magnetic flux is considered by conducting magnetic flux transport simulations over many solar cycles. The simulations include the effects of differential rotation, meridional flow and supergranular diffusion on the radial magnetic field at the surface of the Sun as new magnetic bipoles emerge and are transported poleward. In each cycle the emergence of roughly 2100 bipoles is considered. The net open flux produced by the surface distribution is calculated by constructing potential coronal fields with a source surface from the surface distribution at regular intervals. In the simulations the net open magnetic flux closely follows the total dipole component at the source surface and evolves independently from the surface flux. The behaviour of the open flux is highly dependent on meridional flow and many observed features are reproduced by the model. However, when meridional flow is present at observed values the maximum value of the open flux occurs at cycle minimum when the polar caps it helps produce are the strongest. This is inconsistent with observations by Lockwood, Stamper and Wild (1999) and Wang, Sheeley, and Lean (2000) who find the open flux peaking 1–2 years after cycle maximum. Only in unrealistic simulations where meridional flow is much smaller than diffusion does a maximum in open flux consistent with observations occur. It is therefore deduced that there is no realistic parameter range of the flux transport variables that can produce the correct magnitude variation in open flux under the present approximations. As a result the present standard model does not contain the correct physics to describe the evolution of the Sun’s open magnetic flux over an entire solar cycle. Future possible improvements in modeling are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precipitation of bovine serum albumin (BSA), lysozyme (LYS) and alfalfa leaf protein (ALF) by two large- and two medium-sized condensed tannin (CT) fractions of similar flavan-3-ol subunit composition is described. CT fractions isolated from white clover flowers and big trefoil leaves exhibited high purity profiles by 1D/2D NMR and purities >90% (determined by thiolysis). At pH 6.5, large CTs with a mean degree of polymerization (mDP) of ~18 exhibited similar protein precipitation behaviors and were significantly more effective than medium CTs (mDP ~9). Medium CTs exhibited similar capacities to precipitate ALF or BSA, but showed small but significant differences in their capacity to precipitate LYS. All CTs precipitated ALF more effectively than BSA or LYS. Aggregation of CT-protein complexes likely aided precipitation of ALF and BSA, but not LYS. This study, one of the first to use CTs of confirmed high purity, demonstrates that mDP of CTs influences protein precipitation efficacy.