426 resultados para Flynn, Chris
Modelling sediment supply and transport in the River Lugg: strategies for controlling sediment loads
Resumo:
The River Lugg has particular problems with high sediment loads that have resulted in detrimental impacts on ecology and fisheries. A new dynamic, process-based model of hydrology and sediments (INCA- SED) has been developed and applied to the River Lugg system using an extensive data set from 1995–2008. The model simulates sediment sources and sinks throughout the catchment and gives a good representation of the sediment response at 22 reaches along the River Lugg. A key question considered in using the model is the management of sediment sources so that concentrations and bed loads can be reduced in the river system. Altogether, five sediment management scenarios were selected for testing on the River Lugg, including land use change, contour tillage, hedging and buffer strips. Running the model with parameters altered to simulate these five scenarios produced some interesting results. All scenarios achieved some reduction in sediment levels, with the 40% land use change achieving the best result with a 19% reduction. The other scenarios also achieved significant reductions of between 7% and 9%. Buffer strips produce the best result at close to 9%. The results suggest that if hedge introduction, contour tillage and buffer strips were all applied, sediment reductions would total 24%, considerably improving the current sediment situation. We present a novel cost-effectiveness analysis of our results where we use percentage of land removed from production as our cost function. Given the minimal loss of land associated with contour tillage, hedges and buffer strips, we suggest that these management practices are the most cost-effective combination to reduce sediment loads.
Resumo:
We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.
Resumo:
A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.
Resumo:
Many clouds important to the Earth’s energy balance contain small amounts of liquid water, yet despite many improvements, large differences in retrievals of their liquid water amount and particle size still must be resolved.
Resumo:
Iron is a pivotal element in organometallic chemistry, enabling fundamental insights with high-impact applications.[1] Ferrocene derivatives have countless uses,[2] and the recent advances in iron catalysis are equally impressive.[3]
Resumo:
The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg gÿ1 soil)apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVIenhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation–reduction reactions, potential confounding effects of the test particles on assay conditions should be considered.
Resumo:
We explore the contribution of socio-technical networks approaches to construction management research. These approaches are distinctive for their analysis of actors and objects as mutually constituted within socio-technical networks. They raise questions about the ways in which the content, meaning and use of technology is negotiated in practice, how particular technical configurations are elaborated in response to specific problems and why certain paths or solutions are adopted rather than others. We illustrate this general approach with three case studies: a historical study of the development of reinforced concrete in France, the UK and the US, the recent introduction of 3D-CAD software into four firms and an analysis of the uptake of environmental assessment technologies in the UK since 1990. In each we draw out the ways in which various technologies shaped and were shaped by different socio-technical networks. We conclude with a reflection on the contributions of socio-technical network analysis for more general issues including the study of innovation and analyses of context and power.
Resumo:
The North Atlantic Marine Boundary Layer Experiment (NAMBLEX), involving over 50 scientists from 12 institutions, took place at Mace Head, Ireland (53.32° N, 9.90° W), between 23 July and 4 September 2002. A wide range of state-of-the-art instrumentation enabled detailed measurements of the boundary layer structure and atmospheric composition in the gas and aerosol phase to be made, providing one of the most comprehensive in situ studies of the marine boundary layer to date. This overview paper describes the aims of the NAMBLEX project in the context of previous field campaigns in the Marine Boundary Layer (MBL), the overall layout of the site, a summary of the instrumentation deployed, the temporal coverage of the measurement data, and the numerical models used to interpret the field data. Measurements of some trace species were made for the first time during the campaign, which was characterised by predominantly clean air of marine origin, but more polluted air with higher levels of NOx originating from continental regions was also experienced. This paper provides a summary of the meteorological measurements and Planetary Boundary Layer (PBL) structure measurements, presents time series of some of the longer-lived trace species (O3, CO, H2, DMS, CH4, NMHC, NOx, NOy, PAN) and summarises measurements of other species that are described in more detail in other papers within this special issue, namely oxygenated VOCs, HCHO, peroxides, organo-halogenated species, a range of shorter lived halogen species (I2, OIO, IO, BrO), NO3 radicals, photolysis frequencies, the free radicals OH, HO2 and (HO2+Σ RO2), as well as a summary of the aerosol measurements. NAMBLEX was supported by measurements made in the vicinity of Mace Head using the NERC Dornier-228 aircraft. Using ECMWF wind-fields, calculations were made of the air-mass trajectories arriving at Mace Head during NAMBLEX, and were analysed together with both meteorological and trace-gas measurements. In this paper a chemical climatology for the duration of the campaign is presented to interpret the distribution of air-mass origins and emission sources, and to provide a convenient framework of air-mass classification that is used by other papers in this issue for the interpretation of observed variability in levels of trace gases and aerosols.
Resumo:
Considering the role of student voice in music education in connection with the role of music in identity formation. A report on a small-scale study.
Resumo:
The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)2][Fe(hapto4-P2C2tBu2)2] (K1), [K([18]crown-6)(thf)2][C(h4-P2C2tBu2)2] (K2), and [K([18]crown-6)(thf)2][Co(hapto4-P2C2Ad2)2] (K3, Ad=adamantyl) were obtained from reactions of [K([18crown-6)(thf)2][M(hapto4-C14H10)2] (M=Fe, Co) with tBuCP (1, 2), or with AdCP (3). Neutral sandwiches [M(hapto4-P2C2tBu2)2] (4: M=Fe 5: M=Co) were obtained by oxidizing 1 and 2 with [Cp2Fe]PF6. Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(hapto4-P2C2tBu2)2]-/[M(hapto4-P2C2tBu2)2] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1–5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis,and Moessbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1–3). The molecular structures of 1–5 were determined by using X-ray crystallography. Essentially D2d-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal–ligand pi bonding in 1–5. Possible oxidation state assignments for the metal ions are discussed.
Resumo:
The scaling of metabolic rates to body size is widely considered to be of great biological and ecological importance, and much attention has been devoted to determining its theoretical and empirical value. Most debate centers on whether the underlying power law describing metabolic rates is 2/3 (as predicted by scaling of surface area/volume relationships) or 3/4 ("Kleiber's law"). Although recent evidence suggests that empirically derived exponents vary among clades with radically different metabolic strategies, such as ectotherms and endotherms, models, such as the metabolic theory of ecology, depend on the assumption that there is at least a predominant, if not universal, metabolic scaling exponent. Most analyses claimed to support the predictions of general models, however, failed to control for phylogeny. We used phylogenetic generalized least-squares models to estimate allometric slopes for both basal metabolic rate (BMR) and field metabolic rate (FMR) in mammals. Metabolic rate scaling conformed to no single theoretical prediction, but varied significantly among phylogenetic lineages. In some lineages we found a 3/4 exponent, in others a 2/3 exponent, and in yet others exponents differed significantly from both theoretical values. Analysis of the phylogenetic signal in the data indicated that the assumptions of neither species-level analysis nor independent contrasts were met. Analyses that assumed no phylogenetic signal in the data (species-level analysis) or a strong phylogenetic signal (independent contrasts), therefore, returned estimates of allometric slopes that were erroneous in 30% and 50% of cases, respectively. Hence, quantitative estimation of the phylogenetic signal is essential for determining scaling exponents. The lack of evidence for a predominant scaling exponent in these analyses suggests that general models of metabolic scaling, and macro-ecological theories that depend on them, have little explanatory power.