181 resultados para Fatty degeneration.
Resumo:
With the rising rate of obesity, there is considerable interest in dietary strategies to reduce insulin resistance, a major characteristic of the metabolic syndrome and type 2 diabetes. Diets rich in monounsaturated fatty acids (MUFA) have been suggested as an alternative to low-fat, high-carbohydrate diets to improve glycemic control. However, inconsistent effects have been observed with MUFA-rich diets in both healthy and insulin-resistant individuals. In studies that have reported favorable effects on insulin sensitivity, Mediterranean-style diets have been used that are rich not only in MUFA but also whole-grain foods, fiber, and carbohydrates with a low glycemic index. There is a need for intervention studies to examine the true impact of MUFA-rich oils on glycemic control in both Mediterranean and non-Mediterranean populations. In addition, the metabolic and genotypic status of the participants may also play a role in the inter-individual variability in insulin sensitivity in response to MUFA-rich diets.
Resumo:
BACKGROUND: Enriching poultry meat with long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) can increase low population intakes of LC n-3 PUFA, but fishy taints can spoil reheated meat. This experiment determined the effect of different amounts of LC n-3 PUFA and vitamin E in the broiler diet on the fatty acid composition and sensory characteristics of the breast meat. Ross 308 broilers (120) were randomly allocated to one of five treatments from 21 to 42 days of age. Diets contained (g kg−1) 0, 9 or 18 LC n-3 PUFA (0LC, 9LC, 18LC), and 100, 150 or 200 mg LD--tocopherol acetate kg−1 (E). The five diets were 0LC100E, 9LC100E, 18LC100E, 18LC150E, 18LC200E, with four pens per diet, except 18LC100E (eight pens). Breast meat was analysed for fatty acids (uncooked) and sensory analysis by R-index (reheated). RESULTS: LC n-3 PUFA content (mg kg−1 meat) was 514 (0LC100E) and 2236 (9LC and 18LC). Compared with 0LC100E, meat from 18LC100E and 18LC150E tasted significantly different, while 23% of panellists detected fishy taints in 9LC100E and 18LC200E. CONCLUSION: Chicken meat can be enriched with nutritionally meaningful amounts of LC n-3 PUFA, but > 100 mg dl--tocopherol acetate kg−1 broiler diet is needed to protect reheated meat from oxidative deterioration. Copyright © 2010 Society of Chemical Industry
Resumo:
Human consumption of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) is below recommendations, and enriching chicken meat (by incorporating LC n-3 PUFA into broiler diets) is a viable means of increasing consumption. Fish oil is the most common LC n-3 PUFA supplement used but is unsustainable and reduces the oxidative stability of the meat. The objective of this experiment was to compare fresh fish oil (FFO) with fish oil encapsulated (EFO) in a gelatin matrix (to maintain its oxidative stability) and algal biomass at a low (LAG, 11), medium (MAG, 22), or high (HAG, 33 g/kg of diet) level of inclusion. The C22:6n-3 contents of the FFO, EFO, and MAG diets were equal. A control (CON) diet using blended vegetable oil was also made. As-hatched 1-d-old Ross 308 broilers (144) were reared (21 d) on a common starter diet then allocated to treatment pens (4 pens per treatment, 6 birds per pen) and fed treatment diets for 21 d before being slaughtered. Breast and leg meat was analyzed (per pen) for fatty acids, and cooked samples (2 pens per treatment) were analyzed for volatile aldehydes. Concentrations (mg/100 g of meat) of C20:5n-3, C22:5n-3, and C22:6n-3 were (respectively) CON: 4, 15, 24; FFO: 31, 46, 129; EFO: 18, 27, 122; LAG: 9, 19, 111; MAG: 6, 16, 147; and HAG: 9, 14, 187 (SEM: 2.4, 3.6, 13.1) in breast meat and CON: 4, 12, 9; FFO: 58, 56, 132; EFO: 63, 49, 153; LAG: 13, 14, 101; MAG: 11, 15, 102; HAG: 37, 37, 203 (SEM: 7.8, 6.7, 14.4) in leg meat. Cooked EFO and HAG leg meat was more oxidized (5.2 mg of hexanal/kg of meat) than the other meats (mean 2.2 mg/kg, SEM 0.63). It is concluded that algal biomass is as effective as fish oil at enriching broiler diets with C22:6 LC n-3 PUFA, and at equal C22:6n-3 contents, there is no significant difference between these 2 supplements on the oxidative stability of the meat that is produced.
Resumo:
Supplementing broiler diets with conventional vegetable oils has little effect on the long-chain n-3 PUFA (LC n-3 PUFA) content of the meat. The present study investigated the effect on fatty acid composition and sensory characteristics of chicken meat when broilers were fed oil extracted from soyabeans (SDASOY) that had been genetically engineered to produce C18 : 4n-3 (stearidonic acid (SDA), 240 mg/g oil). Three diets were fed to 120 birds (eight replicate pens of five birds) from 15 d to slaughter (41–50 d). Diets were identical apart from the oil added to them (45 and 50 g/kg as fed in the grower and finisher phases, respectively), which was either SDASOY, near-isogenic soya (CON) or fish oil (FISH). The LC n-3 PUFA content of the meat increased in the order CON, SDASOY and FISH. In breast meat with skin, the SDA concentration was 522, 13 and 37 (sem 14·4) mg/100 g meat for SDASOY, CON and FISH, respectively. Equivalent values for C20 : 5n-3 (EPA) were 53, 13 and 140 (sem 8·4); for C22 : 5n-3 (docosapentaenoic acid (DPA)) 65, 15 and 101 (sem 3·5); for C22 : 6n-3 (DHA) 19, 9 and 181 (sem 4·4). Leg meat (with skin) values for SDA were 861, 23 and 68 (sem 30·1); for EPA 87, 9 and 258 (sem 7·5); for DPA 95, 20 and 165 (sem 5·0); for DHA 29, 10 and 278 (sem 8·4). Aroma, taste and aftertaste of freshly cooked breast meat were not affected. Fishy aromas, tastes and aftertastes were associated with LC n-3 PUFA content of the meat, being most noticeable in the FISH leg meat (both freshly cooked and reheated) and in the reheated SDASOY leg meat.
Resumo:
Increasing rates of obesity have stimulated research into possible contributing factors, including specific dietary components such as trans fatty acids (TFAs). This review considers the evidence for an association between TFA intake and weight gain. It concludes that there is limited but consistent evidence from epidemiological studies, and from a primate model, that increased TFA consumption may result in a small additional weight gain. Data from a long-term study in a primate model suggest that TFA may have a greater adipogenic effect than cis monounsaturated fatty acids; however, there are currently inadequate mechanistic data to provide a comprehensive and plausible explanation for any such metabolic differences between the types of fatty acids.
Acute effects of meal fatty acid composition on insulin sensitivity in healthy post-menopausal women
Resumo:
Postprandial plasma insulin concentrations after a single high-fat meal may be modified by the presence of specific fatty acids although the effects of sequential meal ingestion are unknown. The aim of the present study was to examine the effects of altering the fatty acid composition in a single mixed fat-carbohydrate meal on glucose metabolism and insulin sensitivity of a second meal eaten 5 h later. Insulin sensitivity was assessed using a minimal model approach. Ten healthy post-menopausal women underwent four two-meal studies in random order. A high-fat breakfast (40 g fat) where the fatty acid composition was predominantly saturated fatty acids (SFA), n-6 polyunsaturated fatty acids (PUFA), long-chain n-3 PUFA or monounsaturated fatty acids (MUFA) was followed 5 h later by a low-fat, high-carbohydrate lunch (5.7 g fat), which was identical in all four studies. The plasma insulin response was significantly higher following the SFA meal than the other meals after both breakfast and lunch (P<0.006) although there was no effect of breakfast fatty acid composition on plasma glucose concentrations. Postprandial insulin sensitivity (SI(Oral)) was assessed for 180 min after each meal. SI(Oral) was significantly lower after lunch than after breakfast for all four test meals (P=0.019) following the same rank order (SFA < n-6 PUFA < n-3 PUFA < MUFA) for each meal. The present study demonstrates that a single meal rich in SFA reduces postprandial insulin sensitivity with 'carry-over' effects for the next meal.
Resumo:
The present study was designed to examine whether the type of fat ingested in an initial test meal influences the response and density distribution of dietary-derived lipoproteins in the Svedberg flotation rate (Sf)>400, Sf 60 - 400 and Sf 20 - 60 lipoprotein fractions. A single-blind randomized within-subject crossover design was used to study the effects of palm oil, safflower oil, a mixture of fish and safflower oil, and olive oil on postprandial apolipoprotein (apo) B-48, retinyl ester and triacylglycerol responses in each lipoprotein fraction following an initial test meal containing one of the oils and a second standardized test meal. For all dietary oils, late postprandial (300min) concentrations of triacylglycerol and apo B-48 were significantly higher in the Sf 60 - 400 fraction than in the Sf>400 fraction (P<0.02). Significantly greater apo B-48 incremental areas under the curve (IAUCs) were also observed in the Sf 60 - 400 fraction than in the Sf>400 fraction following palm oil, safflower oil and olive oil (P<0.04), with a similar non-significant trend for fish/safflower oil. Olive oil resulted in a significantly greater apo B-48 IAUC in the Sf>400 fraction (P<0.02) than did any of the other dietary oils, as well as a tendency for a higher IAUC in the Sf 60 - 400 fraction compared with the palm, safflower and fish/safflower oils. In conclusion, we have found that the majority of intestinally derived lipoproteins present in the circulation following meals enriched with saturated, polyunsaturated or monounsaturated fatty acids are of the density and size of small chylomicrons and chylomicron remnants. Olive oil resulted in a greater apo B-48 response compared with the other dietary oils following sequential test meals, suggesting the formation of a greater number of small (Sf 60 - 400) and large (Sf>400) apo B-48-containing lipoproteins in response to this dietary oil.
Resumo:
The UK Food Standards Agency convened a group of expert scientists to review current research investigating the optimal dietary intake for n-9 cis-monounsaturated fatty acids (MUFA). The aim was to review the mechanisms underlying the reported beneficial effects of MUFA on CHD risk, and to establish priorities for future research. The issue of optimal MUFA intake is contingent upon optimal total fat intake; however, there is no consensus of opinion on what the optimal total fat intake should be. Thus, it was recommended that a large multi-centre study should look at the effects on CHD risk of MUFA replacement of saturated fatty acids in relation to varying total fat intakes; this study should be of sufficient size to take account of genetic variation, sex, physical activity and stage of life factors, as well as being of sufficient duration to account for adaptation to diets. Recommendations for studies investigating the mechanistic effects of MUFA were also made. Methods of manipulating the food chain to increase MUFA at the expense of saturated fatty acids were also discussed.
Resumo:
Background: n-3 Polyunsaturated fatty acids (PUFAs) have proven benefits for both the development of atherosclerosis and inflammatory conditions. The effects on atherosclerosis may be partly mediated by the observed reduction in fasting and postprandial triacylglycerol concentrations after both acute and chronic n-3 PUFA ingestion. Objective: The aim of this study was to assess gastric emptying and gastrointestinal hormone release after the consumption of mixed meals rich in n-3 PUFAs or other classes of fatty acids. Design: Ten healthy women (aged 50–62 y) completed 4 separate study visits in a single-blind, randomized design. On each occasion, subjects consumed 40 g oil rich in either saturated fatty acids, monounsaturated fatty acids, n-6 PUFAs, or n-3 PUFAs as part of a mixed meal. [1-13C]Octanoic acid (100 mg) was added to each oil. Gastric emptying was assessed by a labeled octanoic acid breath test, and concentrations of gastrointestinal hormones and plasma lipids were measured. Results: Recovery of 13C in breath was enhanced after n-3 PUFA ingestion (P < 0.005). The cholecystokinin response after the n-3 PUFA meal was significantly delayed (P < 0.001), and the glucagon-like peptide 1 response was significantly reduced (P < 0.05). Conclusion: The inclusion of n-3 PUFAs in a meal alters the gastric emptying rate, potentially as the result of changes in the pattern of cholecystokinin and glucagon-like peptide 1 release.
Resumo:
In two separate studies, the cholesterol-lowering efficacy of a diet high in monounsaturated fatty acids (MUFA) was evaluated by means of a randomized crossover trial. In both studies subjects were randomized to receive either a high-MUFA diet or the control diet first, which they followed for a period of 8 weeks; following a washout period of 4–6 weeks they were transferred onto the opposing diet for a further period of 8 weeks. In one study subjects were healthy middle-aged men (n 30), and in the other they were young men (n 23) with a family history of CHD recruited from two centres (Guildford and Dublin). The two studies were conducted over the same time period using identical foods and study designs. Subjects consumed 38% energy as fat, with 18% energy as MUFA and 10% as saturated fatty acids (MUFA diet), or 13% energy as MUFA and 16% as saturated fatty acids (control diet). The polyunsaturated fatty acid content of each diet was 7%. The diets were achieved by providing subjects with manufactured foods such as spreads, ‘ready meals’, biscuits, puddings and breads, which, apart from their fatty acid compositions, were identical for both diets. Subjects were blind to which of the diets they were following on both arms of the study. Weight changes on the diets were less than 1 kg. In the groups combined (n 53) mean total and LDL-cholesterol levels were significantly lower at the end of the MUFA diet than the control diet by 0×29 (SD 0×61) mmol/l (P,0×001) and 0×38 (SD 0×64) mmol/l (P, 0×0001) respectively. In middle-aged men these differences were due to a mean reduction in LDL-cholesterol of ¹11 (SD 12) % on the MUFA diet with no change on the control diet (¹1×1 (SD 10) %). In young men the differences were due to an increase in LDL-cholesterol concentration on the control diet of þ6×2 (SD 13) % and a decrease on the MUFA diet of ¹7×8 (SD 20) %. Differences in the responses of middle-aged and young men to the two diets did not appear to be due to differences in their habitual baseline diets which were generally similar, but appeared to reflect the lower baseline cholesterol concentrations in the younger men. There was a moderately strong and statistically significant inverse correlation between the change in LDLcholesterol concentration on each diet and the baseline fasting LDL-cholesterol concentration (r¹0×49; P,0×0005). In conclusion, diets in which saturated fat is partially replaced by MUFA can achieve significant reductions in total and LDL-cholesterol concentrations, even when total fat and energy intakes are maintained. The dietary approach used to alter fatty acid intakes would be appropriate for achieving reductions in saturated fat intakes in whole populations.
Resumo:
The extent and duration of postprandial lipaemia have been linked to risk of CHD but the influence of dietary variables on, and the relative contributions of, exogenous (chylomicron) and endogenous (VLDL) triacylglycerols to the total lipaemic response have not been comprehensively evaluated. In the present study the triacylglycerol, apolipoprotein (apo) B-48 and retinyl ester (RE) responses to three test meals of varying monounsaturated (MUFA) and saturated fatty acid (SFA) content were measured in the triacylglycerol-rich lipoprotein (TRL) fraction of plasma (r ¼ 1·006 g/ml) for 9 h after meal consumption. Fifteen healthy normolipidaemic young men consumed, on separate occasions, three test meals which were identical apart from their MUFA and SFA contents. Expressed as a percentage of total energy the MUFA/SFA contents of the meals were: (1) 12 %/17 %; (2) 17 %/12% and (3) 24 %/5 %. The contribution of the intestinally-derived lipoproteins (chylomicrons) to the lipaemic response was investigated by determining the time to reach peak concentration and the total and incremental areas under the time response curves (AUC and incremental AUC) for RE, apoB-48 and triacylglycerol in the TRL fraction. No significant differences in these measurements were observed for the three meals. However, visual comparison of the postprandial responses to the three meals suggested that as meal MUFA content increased there was a tendency for the triacylglycerol, apoB-48 and RE responses to become biphasic as opposed to the typical monophasic response seen with the 12% MUFA/17% SFA meal. Comparison of the apoB-48 and RE responses for the three test meals confirmed other workers’ findings of delayed entry of RE relative to apoB-48 in TRL. The value of the two markers in investigating dietary fat absorption and metabolism is discussed.
Resumo:
BACKGROUND AND AIM: The atherogenic potential of dietary derived lipids, chylomicrons (CM) and their remnants (CMr) is now becoming more widely recognised. To investigate factors effecting levels of CM and CMr and their importance in coronary heart disease risk it is essential to use a specific method of quantification. Two studies were carried out to investigate: (i) effects of increased daily intake of long chain n-3 polyunsaturated fatty acid (LC n-3 PUFA), and (ii) effects of increasing meal monounsaturated fatty acid (MUFA) content on the postprandial response of intestinally-derived lipoproteins. The contribution of the intestinally-derived lipoproteins to total lipaemia was assessed by triacylglycerol-rich lipoprotein (TRL) apolipoprotein B-48 (apo B-48) and retinyl ester (RE) concentrations. METHODS AND RESULTS: In a randomised controlled crossover trial (placebo vs LC n-3 PUFA) a mean daily intake of 1.4 g/day of LC n-3 PUFA failed to reduce fasting and postprandial triacylglycerol (TAG) response in 9 healthy male volunteers. Although the pattern and nature of the apo B-48 response was consistent with the TAG response following the two diets, the postprandial RE response differed on the LC n-3 PUFA diet with a lower early RE response and a delayed and more marked increase in RE in the late postprandial period compared with the control diet, but the differences did not reach levels of statistical significance. In the meal study there was no effect of MUFA/SFA content on the total lipaemic response to the meals nor on the contribution of intestinally derived lipoproteins evaluated as TAG, apo B-48 and RE responses in the TRL fraction. In both studies, the RE and apo B-48 measurements provided broadly similar information with respect to lack of effects of dietary or meal fatty acid composition and the presence of single or multiple peak responses. However the apo B-48 and RE measurements differed with respect to the timing of their peak response times, with a delayed RE peak, relalive to apo B-48, of approximately 2-3 hours for the LC n-3 PUFA diet (p = 0.002) study and 1-1.5 hours for the meal MUFA/SFA study. CONCLUSIONS: It was concluded that there are limitations of using RE as a specific CM marker, apo B-48 quantitation was found to be a more appropriate method for CM and CMr quantitation. However it was still considered of value to measure RE as it provided additional information regarding the incorporation of other constituents into the CM particle.