154 resultados para Fatty acid profiles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast milk fatty acid composition may be affected by maternal diet during gestation and lactation. The influence of dietary and breast milk fatty acids on breast milk immune factors is poorly defined. We determined the fatty acid composition and immune factor concentrations of breast milk from women residing in river & lake, coastal, and inland regions of China, which differ in their consumption of lean fish and oily fish. Breast milk samples were collected on days 3 to 5 (colostrum), 14 and 28 post-partum and analysed for soluble CD14 (sCD14), transforming growth factor (TGF)-β1, TGF-β2, secretory immunoglobulin A (sIgA) and fatty acids. The fatty acid composition of breast milk differed between regions and with time post-partum. The concentrations of all four immune factors in breast milk decreased over time, with sCD14, sIgA and TGF-β1 being highest in colostrum in the river & lake region. Breast milk DHA and arachidonic acid (AA) were positively associated, and γ-linolenic acid and EPA negatively associated, with the concentrations of each of the four immune factors. In conclusion, breast milk fatty acids and immune factors differ between regions in China characterised by different patterns of fish consumption and change during the course of lactation. A higher breast milk DHA and AA concentration is associated with higher concentrations of immune factors in breast milk, suggesting a role for these fatty acids in promoting gastrointestinal and immune maturation of the infant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary objective was to determine fatty acid composition of skinless chicken breast and leg meat portions and chicken burgers and nuggets from the economy price range, standard price range (both conventional intensive rearing) and the organic range from four leading supermarkets. Few significant differences in the SFA, MUFA and PUFA composition of breast and leg meat portions were found among price ranges, and supermarket had no effect. No significant differences in fatty acid concentrations of economy and standard chicken burgers were found, whereas economy chicken nuggets had higher C16:1, C18:1 cis, C18:1 trans and C18:3 n-3 concentrations than had standard ones. Overall, processed chicken products had much higher fat contents and SFA than had whole meat. Long chain n-3 fatty acids had considerably lower concentrations in processed products than in whole meat. Overall there was no evidence that organic chicken breast or leg meat had a more favourable fatty acid composition than had meat from conventionally reared birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: Arterial stiffness is an independent predictor of cardiovascular disease (CVD) events and all-cause mortality and may be differentially affected by dietary fatty acid (FA) intake. The aim of this study was to investigate the relationship between FA consumption and arterial stiffness and blood pressure in a community-based population. Methods and results: The Caerphilly Prospective Study recruited 2398 men, aged 45-59 years, who were followed up at 5-year intervals for a mean of 17.8-years (n 787). A semi-quantitative food frequency questionnaire estimated intakes of total, saturated, mono- and poly-unsaturated fatty acids (SFA, MUFA, PUFA). Multiple regression models investigated associations between intakes of FA at baseline with aortic pulse wave velocity (aPWV), augmentation index (AIx), systolic and diastolic blood pressure (SBP, DBP) and pulse pressure after a 17.8-year follow-up - as well as cross-sectional relationships with metabolic markers. After adjustment, higher SFA consumption at baseline was associated with higher SBP (P = 0.043) and DBP (P = 0.002) and after a 17.8-year follow-up was associated with a 0.51 m/s higher aPWV (P = 0.006). After adjustment, higher PUFA consumption at baseline was associated with lower SBP (P = 0.022) and DBP (P = 0.036) and after a 17.8-year follow-up was associated with a 0.63 m/s lower aPWV (P = 0.007). Conclusion: This study suggests that consumption of SFA and PUFA have opposing effects on arterial stiffness and blood pressure. Importantly, this study suggests that consumption of FA is an important risk factor for arterial stiffness and CVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milk and dairy products are major sources of fat in the human diet, but there are few detailed reports on the fatty acid composition of retail milk, trans fatty acids in particular, and how these change throughout the year. Semi-skimmed milk was collected monthly for one year from five supermarkets and analysed for fatty acid composition. Relative to winter, milk sold in the summer contained lower total saturated fatty acid (SFA; 67 vs 72 g/100 g fatty acids) and higher cis-monounsaturated fatty acid (MUFA; 23 vs 21 g/100 g fatty acids) and total trans fatty acid (6.5 vs 4.5 g/100 g fatty acids) concentrations. Concentrations of most trans-18:1 and -18:2 isomers also exhibited seasonal variation. Results were applied to national dietary intakes, and indicated that monthly variation in the fatty acid composition of milk available at retail has limited influence on total dietary fatty acid consumption by UK adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of forage conservation method on plasma lipids, mammary lipogenesis, and milk fat were examined in 2 complementary experiments. Treatments comprised fresh grass, hay, or untreated (UTS) or formic acid treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows fed fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare a diet based on fresh grass followed by hay during 2 consecutive 14-d periods, separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3 × 3 Latin square design, with 14-d periods to compare hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Arterial concentrations of triacylglycerol (TAG) and phospholipid were higher in cows fed fresh grass, UTS, and FAS compared with hay. Nonesterified fatty acid (NEFA) concentrations and the relative abundance of 18:2n-6 and 18:3n-3 in TAG of arterial blood were also higher in cows fed fresh grass than conserved forages. On all diets, TAG was the principle source of fatty acids (FA) for milk fat synthesis, whereas mammary extraction of NEFA was negligible, except during zero-grazing, which was associated with a lower, albeit positive calculated energy balance. Mammary FA uptake was higher and the synthesis of 16:0 lower in cows fed fresh grass than hay. Conservation of grass by drying or ensiling had no influence on mammary extraction of TAG and NEFA, despite an increase in milk fat secretion for silages compared with hay and for FAS than UTS. Relative to hay, milk fat from fresh grass contained lower 12:0, 14:0, and 16:0 and higher S3,R7,R11,15-tetramethyl-16:0, cis-9 18:1, trans-11 18:1, cis-9,trans-11 18:2, 18:2n-6, and 18:3n-3 concentrations. Even though conserved forages altered mammary lipogenesis, differences in milk FA composition were relatively minor, other than a higher enrichment of S3,R7,R11,15-tetramethyl-16:0 in milk from silages compared with hay. In conclusion, differences in milk fat composition on fresh grass relative to conserved forages were associated with a lower energy balance, increased uptake of preformed FA, and decreased synthesis of 16:0 de novo in the mammary glands, in the absence of alterations in stearoyl-coenzyme A desaturase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostaglandins (PG) are known to induce pain perception indirectly by sensitizing nociceptors. Accordingly, the analgesic action of nonsteroidal anti-inflammatory drugs (NSAIDs) results from inhibition of cyclooxygenases and blockade of PG biosynthesis. Cyclopentenone PGs, 15-d-PGJ(2), PGA(2), and PGA(1), formed by dehydration of their respective parent PGs, PGD(2), PGE(2), and PGE(1), possess a highly reactive alpha,beta-unsaturated carbonyl group that has been proposed to gate the irritant transient receptor potential A1 (TRPA1) channel. Here, by using TRPA1 wild-type (TRPA1(+/+)) or deficient (TRPA1(-/-)) mice, we show that cyclopentenone PGs produce pain by direct stimulation of nociceptors via TRPA1 activation. Cyclopentenone PGs caused a robust calcium response in dorsal root ganglion (DRG) neurons of TRPA1(+/+), but not of TRPA1(-/-) mice, and a calcium-dependent release of sensory neuropeptides from the rat dorsal spinal cord. Intraplantar injection of cyclopentenone PGs stimulated c-fos expression in spinal neurons of the dorsal horn and evoked an instantaneous, robust, and transient nociceptive response in TRPA1(+/+) but not in TRPA1(-/-) mice. The classical proalgesic PG, PGE(2), caused a slight calcium response in DRG neurons, increased c-fos expression in spinal neurons, and induced a delayed and sustained nociceptive response in both TRPA1(+/+) and TRPA1(-/-) mice. These results expand the mechanism of NSAID analgesia from blockade of indirect nociceptor sensitization by classical PGs to inhibition of direct TRPA1-dependent nociceptor activation by cyclopentenone PGs. Thus, TRPA1 antagonism may contribute to suppress pain evoked by PG metabolites without the adverse effects of inhibiting cyclooxygenases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose of review Evidence suggests that short-chain fatty acids (SCFAs) derived from microbial metabolism in the gut play a central role in host homeostasis. The present review describes the current understanding and physiological implications of SCFAs derived from microbial metabolism of nondigestible carbohydrates. Recent findings Recent studies indicate a role for SCFAs, in particular propionate and butyrate, in the metabolic and inflammatory disorders such as obesity, diabetes and inflammatory bowel diseases, through the activation of specific G-protein-coupled receptors and modification of transcription factors. Established prebiotics, such as fructooligosaccharides and galactooligosaccharides, which support the growth of Bifidobacteria, mainly mediate acetate production. Thus, recent identification of prebiotics which are able to stimulate the production of propionate and butyrate by benign saccharolytic populations in the colon is of interest. Summary Manipulation of saccharolytic fermentation by prebiotic substrates is beginning to provide information on structure–function relationships relating to the production of SCFAs, which have multiple roles in host homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims: We have reported that adverse effects on flow-mediated dilation of an acute elevation of non-esterified fatty acids rich in saturated fat (SFA) are reversed following addition of long-chain (LC) n-3 polyunsaturated fatty acids (PUFA), and hypothesised that these effects may be mediated through alterations in insulin signalling pathways. In a subgroup, we explored the effects of raised NEFA enriched with SFA, with or without LC n-3 PUFA, on whole body insulin sensitivity (SI) and responsiveness of the endothelium to insulin infusion. Methods and Results: Thirty adults (mean age 27.8 y, BMI 23.2 kg/m2) consumed oral fat loads on separate occasions with continuous heparin infusion to elevate NEFA between 60-390 min. For the final 150 min, a hyperinsulinaemic-euglycaemic clamp was performed, whilst FMD and circulating markers of endothelial function were measured at baseline, pre-clamp (240 min) and post-clamp (390 min). NEFA elevation during the SFA-rich drinks was associated with impaired FMD (P=0.027) whilst SFA+LC n-3 PUFA improved FMD at 240 min (P=0.003). In males, insulin infusion attenuated the increase in FMD with SFA+LC n-3 PUFA (P=0.049), with SI 10% greater with SFA+LC n-3 PUFA than SFA (P=0.041). Conclusion: This study provides evidence that NEFA composition during acute elevation influences both FMD and SI, with some indication of a difference by gender. However our findings are not consistent with the hypothesis that the effects of fatty acids on endothelial function and SI operate through a common pathway. Trial registered at clinicaltrials.gov, NCT01351324.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replacing dietary grass silage (GS) with maize silage (MS) and dietary fat supplements may reduce milk concentration of specific saturated fatty acids (SFA) and can reduce methane production by dairy cows. The present study investigated the effect of feeding an extruded linseed supplement on milk fatty acid (FA) composition and methane production of lactating dairy cows, and whether basal forage type, in diets formulated for similar neutral detergent fiber and starch, altered the response to the extruded linseed supplement. Four mid-lactation Holstein-Friesian cows were fed diets as total mixed rations, containing either high proportions of MS or GS, both with or without extruded linseed supplement, in a 4 × 4 Latin square design experiment with 28-d periods. Diets contained 500 g of forage/kg of dry matter (DM) containing MS and GS in proportions (DM basis) of either 75:25 or 25:75 for high MS or high GS diets, respectively. Extruded linseed supplement (275 g/kg ether extract, DM basis) was included in treatment diets at 50 g/kg of DM. Milk yields, DM intake, milk composition, and methane production were measured at the end of each experimental period when cows were housed in respiration chambers. Whereas DM intake was higher for the MS-based diet, forage type and extruded linseed had no significant effect on milk yield, milk fat, protein, or lactose concentration, methane production, or methane per kilogram of DM intake or milk yield. Total milk fat SFA concentrations were lower with MS compared with GS-based diets (65.4 vs. 68.4 g/100 g of FA, respectively) and with extruded linseed compared with no extruded linseed (65.2 vs. 68.6 g/100 g of FA, respectively), and these effects were additive. Concentrations of total trans FA were higher with MS compared with GS-based diets (7.0 vs. 5.4 g/100 g of FA, respectively) and when extruded linseed was fed (6.8 vs. 5.6 g/100 g of FA, respectively). Total n-3 FA were higher when extruded linseed was fed compared with no extruded linseed (1.2 vs. 0.8 g/100 g of FA, respectively), whereas total n-6 polyunsaturated FA were higher when feeding MS compared with GS (2.5 vs. 2.1 g/100 g of FA, respectively). Feeding extruded linseed and MS both provided potentially beneficial decreases in SFA concentration of milk, and no significant interactions were found between extruded linseed supplementation and forage type. However, both MS and extruded linseed increased trans FA concentration in milk fat. Neither MS nor extruded linseed had significant effects on methane production or yield, but the amounts of supplemental lipid provided by extruded linseed were relatively small.