90 resultados para Extended Karplus equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the Euler equations for the compressible flow of an ideal gas. A linearised Riemann problem is defined, and a scheme based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to the usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. The scheme is applied to a shock tube problem and a blast wave problem. Each approximate solution compares well with those given by other schemes, and for the shock tube problem is in agreement with the exact solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional shock (bore) reflection problem is discussed for the two-dimensional shallow water equations with cylindrical symmetry. The differential equations for a similarity solution are derived and solved numerically in conjunction with the Rankine-Hugoniot shock relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient algorithm based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations in a generalised coordinate system. The scheme is based on solving linearised Riemann problems approximately and in more than one dimension incorporates operator splitting. The scheme has good jump capturing properties and the advantage of using body-fitted meshes. Numerical results are shown for flow past a circular obstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a spectral method to solve numerically two nonlocal, nonlinear, dispersive, integrable wave equations, the Benjamin-Ono and the Intermediate Long Wave equations. The proposed numerical method is able to capture well the dynamics of the solutions; we use it to investigate the behaviour of solitary wave solutions of the equations with special attention to those, among the properties usually connected with integrability, for which there is at present no analytic proof. Thus we study in particular the resolution property of arbitrary initial profiles into sequences of solitary waves for both equations and clean interaction of Benjamin-Ono solitary waves. We also verify numerically that the behaviour of the solution of the Intermediate Long Wave equation as the model parameter tends to the infinite depth limit is the one predicted by the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a non-local version of the NJL model, based on a separable quark-quark interaction. The interaction is extended to include terms that bind vector and axial-vector mesons. The non-locality means that no further regulator is required. Moreover the model is able to confine the quarks by generating a quark propagator without poles at real energies. Working in the ladder approximation, we calculate amplitudes in Euclidean space and discuss features of their continuation to Minkowski energies. Conserved currents are constructed and we demonstrate their consistency with various Ward identities. Various meson masses are calculated, along with their strong and electromagnetic decay amplitudes. We also calculate the electromagnetic form factor of the pion, as well as form factors associated with the processes γγ* → π0 and ω → π0γ*. The results are found to lead to a satisfactory phenomenology and lend some dynamical support to the idea of vector-meson dominance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanostructure of a peptide amphiphile in commercial use in anti-wrinkle creams is investigated. The peptide contains a matrikine, collagen-stimulating, pentapeptide sequence. Selfassembly into giant nanotapes is observed and the internal structure was found to comprise bilayers parallel to the flat tape surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlocal version of the NJL model is investigated. It is based on a separable quark-quark interaction, as suggested by the instanton liquid picture of the QCD vacuum. The interaction is extended to include terms that bind vector and axial-vector mesons. The nonlocality means that no further regulator is required. Moreover the model is able to confine the quarks by generating a quark propagator without poles at real energies. Features of the continuation of amplitudes from Euclidean space to Minkowski energies are discussed. These features lead to restrictions on the model parameters as well as on the range of applicability of the model. Conserved currents are constructed, and their consistency with various Ward identities is demonstrated. In particular, the Gell-Mann-Oakes-Renner relation is derived both in the ladder approximation and at meson loop level. The importance of maintaining chiral symmetry in the calculations is stressed throughout. Calculations with the model are performed to all orders in momentum. Meson masses are determined, along with their strong and electromagnetic decay amplitudes. Also calculated are the electromagnetic form factor of the pion and form factors associated with the processes gamma gamma* --> pi0 and omega --> pi0 gamma*. The results are found to lead to a satisfactory phenomenology and demonstrate a possible dynamical origin for vector-meson dominance. In addition, the results produced at meson loop level validate the use of 1/Nc as an expansion parameter and indicate that a light and broad scalar state is inherent in models of the NJL type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.