88 resultados para Evolutionary computation
Resumo:
A central process in evolution is the recruitment of genes to regulatory networks. We engineered immotile strains of the bacterium Pseudomonas fluorescens that lack flagella due to deletion of the regulatory gene fleQ. Under strong selection for motility, these bacteria consistently regained flagella within 96 hours via a two-step evolutionary pathway. Step 1 mutations increase intracellular levels of phosphorylated NtrC, a distant homologue of FleQ, which begins to commandeer control of the fleQ regulon at the cost of disrupting nitrogen uptake and assimilation. Step 2 is a switch-of-function mutation that redirects NtrC away from nitrogen uptake and towards its novel function as a flagellar regulator. Our results demonstrate that natural selection can rapidly rewire regulatory networks in very few, repeatable mutational steps.
Resumo:
This paper investigates the feasibility of using approximate Bayesian computation (ABC) to calibrate and evaluate complex individual-based models (IBMs). As ABC evolves, various versions are emerging, but here we only explore the most accessible version, rejection-ABC. Rejection-ABC involves running models a large number of times, with parameters drawn randomly from their prior distributions, and then retaining the simulations closest to the observations. Although well-established in some fields, whether ABC will work with ecological IBMs is still uncertain. Rejection-ABC was applied to an existing 14-parameter earthworm energy budget IBM for which the available data consist of body mass growth and cocoon production in four experiments. ABC was able to narrow the posterior distributions of seven parameters, estimating credible intervals for each. ABC’s accepted values produced slightly better fits than literature values do. The accuracy of the analysis was assessed using cross-validation and coverage, currently the best available tests. Of the seven unnarrowed parameters, ABC revealed that three were correlated with other parameters, while the remaining four were found to be not estimable given the data available. It is often desirable to compare models to see whether all component modules are necessary. Here we used ABC model selection to compare the full model with a simplified version which removed the earthworm’s movement and much of the energy budget. We are able to show that inclusion of the energy budget is necessary for a good fit to the data. We show how our methodology can inform future modelling cycles, and briefly discuss how more advanced versions of ABC may be applicable to IBMs. We conclude that ABC has the potential to represent uncertainty in model structure, parameters and predictions, and to embed the often complex process of optimizing an IBM’s structure and parameters within an established statistical framework, thereby making the process more transparent and objective.
Resumo:
Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks – homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015), 347(6225)] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs.
Resumo:
There is strong evidence from animal studies that prenatal stress has different effects on male and female offspring. In general, although not always, prenatal stress increases anxiety, depression and stress responses, both hypothalamic–pituitary–adrenal and cardiovascular, in female offspring rather than in male. Males are more likely to show learning and memory deficits. There have been few studies so far in humans which differentiate effects of prenatal stress on male and female psychopathology. Some studies support the animal models, but the evidence is inconsistent. The mediating mechanisms for any sex specific effects are little understood, but there is evidence that placental function can differ depending on the sex of the fetus. We suggest that there may be an evolutionary reason for any sex differences in the long term effects of prenatal stress. In a stressful environment it may be adaptive for females, who are more likely to stay in one place and look after children, to be more vigilant, alert to danger and thus show more stress responsiveness. This can give rise to a more anxious or depressed phenotype. With males it may be more adaptive to go out and explore new environments, compete with other males, and be more aggressive. For this it may help to be less responsive to external stressors. More research is needed into sex differences in the effects of prenatal stress in humans, to test these ideas.
Resumo:
Obesity is an escalating threat of pandemic proportions and has risen to such unrivaled prominence in such a short period of time that it has come to define a whole generation in many countries around the globe. The burden of obesity, however, is not equally shared among the population, with certain ethnicities being more prone to obesity than others, while some appear to be resistant to obesity altogether. The reasons behind this ethnic basis for obesity resistance and susceptibility, however, have remained largely elusive. In recent years, much evidence has shown that the level of brown adipose tissue thermogenesis, which augments energy expenditure and is negatively associated with obesity in both rodents and humans, varies greatly between ethnicities. Interestingly, the incidence of low birth weight, which is associated with an increased propensity for obesity and cardiovascular disease in later life, has also been shown to vary by ethnic background. This review serves to reconcile ethnic variations in BAT development and function with ethnic differences in birth weight outcomes to argue that the variation in obesity susceptibility between ethnic groups may have its origins in the in utero programming of BAT development and function as a result of evolutionary adaptation to cold environments.
Resumo:
Obesity is an escalating threat of pandemic proportions, currently affecting billions of people worldwide and exerting a devastating socioeconomic influence in industrialized countries. Despite intensive efforts to curtail obesity, results have proved disappointing. Although it is well recognized that obesity is a result of gene-environment interactions and that predisposition to obesity lies predominantly in our evolutionary past, there is much debate as to the precise nature of how our evolutionary past contributed to obesity. The “thrifty genotype” hypothesis suggests that obesity in industrialized countries is a throwback to our ancestors having undergone positive selection for genes that favored energy storage as a consequence of the cyclical episodes of famine and surplus after the advent of farming 10 000 years ago. Conversely, the “drifty genotype” hypothesis contends that the prevalence of thrifty genes is not a result of positive selection for energy-storage genes but attributable to genetic drift resulting from the removal of predative selection pressures. Both theories, however, assume that selection pressures the ancestors of modern humans living in western societies faced were the same. Moreover, neither theory adequately explains the impact of globalization and changing population demographics on the genetic basis for obesity in developed countries, despite clear evidence for ethnic variation in obesity susceptibility and related metabolic disorders. In this article, we propose that the modern obesity pandemic in industrialized countries is a result of the differential exposure of the ancestors of modern humans to environmental factors that began when modern humans left Africa around 70 000 years ago and migrated through the globe, reaching the Americas around 20 000 years ago. This article serves to elucidate how an understanding of ethnic differences in genetic susceptibility to obesity and the metabolic syndrome, in the context of historic human population redistribution, could be used in the treatment of obesity in industrialized countries
Resumo:
Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed.
Resumo:
The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary methods are numerous, and methodologies to compare the performance of these methods beyond obtaining a minimal solution for a given problem are currently lacking. A methodology to compare algorithms based on an efficiency rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically determines the performance of a given algorithm while also considering the quality of the obtained solution and the required computational effort. From the wide range of available evolutionary algorithms, four algorithms were selected to implement the methodology: a PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simulations, a statistical analysis was performed based on the specific parameters each algorithm requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency measure indicated that PGA is the most efficient algorithm for problems of greater complexity and that HS is the most efficient algorithm for less complex problems. However, the main contribution of this work is that the proposed efficiency ratio provides a neutral strategy to compare optimization algorithms and may be useful in the future to select the most appropriate algorithm for different types of optimization problems.
Resumo:
Approximate Bayesian computation (ABC) is a popular family of algorithms which perform approximate parameter inference when numerical evaluation of the likelihood function is not possible but data can be simulated from the model. They return a sample of parameter values which produce simulations close to the observed dataset. A standard approach is to reduce the simulated and observed datasets to vectors of summary statistics and accept when the difference between these is below a specified threshold. ABC can also be adapted to perform model choice. In this article, we present a new software package for R, abctools which provides methods for tuning ABC algorithms. This includes recent dimension reduction algorithms to tune the choice of summary statistics, and coverage methods to tune the choice of threshold. We provide several illustrations of these routines on applications taken from the ABC literature.
Resumo:
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source 4 population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to nonacclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits.
Resumo:
Trust and reputation are important factors that influence the success of both traditional transactions in physical social networks and modern e-commerce in virtual Internet environments. It is difficult to define the concept of trust and quantify it because trust has both subjective and objective characteristics at the same time. A well-reported issue with reputation management system in business-to-consumer (BtoC) e-commerce is the “all good reputation” problem. In order to deal with the confusion, a new computational model of reputation is proposed in this paper. The ratings of each customer are set as basic trust score events. In addition, the time series of massive ratings are aggregated to formulate the sellers’ local temporal trust scores by Beta distribution. A logical model of trust and reputation is established based on the analysis of the dynamical relationship between trust and reputation. As for single goods with repeat transactions, an iterative mathematical model of trust and reputation is established with a closed-loop feedback mechanism. Numerical experiments on repeated transactions recorded over a period of 24 months are performed. The experimental results show that the proposed method plays guiding roles for both theoretical research into trust and reputation and the practical design of reputation systems in BtoC e-commerce.
Resumo:
Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce.