111 resultados para Entomopathogenic bacterium
Resumo:
The induction of apoptosis in mammalian cells by bacteria is well reported. This process may assist infection by pathogens whereas for non-pathogens apoptosis induction within carcinoma cells protects against colon cancer. Here, apoptosis induction by a major new gut bacterium, Atopobium minutum, was compared with induction by commensal (Escherichia coli K-12 strains), probiotic (Lactobacillus rhamnosus, Bifidobacterium latis) and pathogenic (E. coli: EPEC and VTEC) gut bacteria within the colon cancer cell line, Caco-2. The results show a major apoptotic effect for the pathogens, mild effects for the probiotic strains and A. minutum, but no effect for commensal E. coli. The mild apoptotic effects observed are consistent with the beneficial roles of probotics in protection against colon cancer and suggest, for the first time, that A. minutum possesses similar advantageous, anti-cancerous activity. Although bacterial infection increased Caco-2 membrane FAS levels, caspase-8 was not activated indicating that apoptosis is FAS independent. Instead, in all cases, apoptosis was induced through the mitochondrial pathway as indicated by BAX translocation, cytorchrome c release, and caspase-9 and -3 cleavage. This suggests that an intracellular stimulus initiates the observed apoptosis responses.
Resumo:
A recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae). On the basis of these sequences alone, the E-Pae strains were identical to the Pae type-strain (I-Pae), isolated from leaf spots on Indian horse chestnut in India in 1969. The phylogenetic analyses also showed that Pae belongs to a distinct clade of P. syringae pathovars adapted to woody hosts. We generated genome-wide Illumina sequence data from the three E-Pae strains and one strain of I-Pae. Comparative genomic analyses revealed pathovar-specific genomic regions in Pae potentially implicated in virulence on a tree host, including genes for the catabolism of plant-derived aromatic compounds and enterobactin synthesis. Several gene clusters displayed intra-pathovar variation, including those encoding type IV secretion, a novel fatty acid biosynthesis pathway and a sucrose uptake pathway. Rates of single nucleotide polymorphisms in the four Pae genomes indicate that the three E-Pae strains diverged from each other much more recently than they diverged from I-Pae. The very low genetic diversity among the three geographically distinct E-Pae strains suggests that they originate from a single, recent introduction into Britain, thus highlighting the serious environmental risks posed by the spread of an exotic plant pathogenic bacterium to a new geographic location. The genomic regions in Pae that are absent from other P. syringae pathovars that infect herbaceous hosts may represent candidate genetic adaptations to infection of the woody parts of the tree.
Resumo:
Six strains of a previously undescribed catalase-positive coryneform bacterium isolated from clinical specimens from dogs were characterized by phenotypic and molecular genetic methods. Biochemical and chemotaxonomic studies revealed that the unknown bacterium belonged to the genus Corynebacterium sensu stricto. Comparative 16S rRNA gene sequencing showed that the six strains were genealogically highly related and constitute a new subline within the genus Corynebacterium; this subline is close to but distinct from C. falsenii, C. jeikeium, and C. urealyticum. The unknown bacterium from dogs was distinguished from all currently validated Corynebacterium species by phenotypic tests including electrophoretic analysis of whole-cell proteins. On the basis of phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as a new species, Corynebacterium auriscanis. The type strain of C. auriscanis is CCUG 39938T.
Resumo:
A hitherto undescribed Actinomyces-like bacterium was isolated from the vagina of a dog. Biochemical testing and PAGE analysis of whole-cell proteins indicated that the isolate was phenotypically different from previously described Actinomyces species and related taxa. Sequencing of 165 rRNA showed that the unknown bacterium was distinct from all currently known Actinomyces species. Phylogenetically, the unidentified organism displayed a specific association with Actinomyces europaeus, but a sequence divergence of > 5% demonstrated that it represents a distinct species. Based on both phenotypic and 165 rRNA sequence considerations, it is proposed that the unknown strain from a dog be classified as a novel species, Actinomyces coleocanis sp. nov. The type strain is CCUG 41708T (= CIP 106873T).
Resumo:
Five strains of an unusual catalase-negative Gram-positive asporogenous rod-shaped bacterium from human sources were subjected to a polyphasic taxonomic study. The presence of fructose-6-phosphate phosphoketolase, a key enzyme of bifidobacterial hexose metabolism, indicated the strains were members of the genus Bifidobacterium but they did not correspond to any of the recognized species of this genus on the basis of biochemical profiles and whole-cell protein analyses. Comparative 16S rRNA gene sequencing confirmed the placement of the isolates in the genus Bifidobacterium, and demonstrated they represent a hitherto unknown subline within the genus displaying > 5% sequence divergence with recognized species. Based on both phenotypic and phylogenetic criteria, it is proposed that the isolates recovered from human sources be classified as a new species, Bifidobacterium scardovii sp. nov.; the type strain is CCUG 13008T (= DSM 13734T).
Resumo:
A polyphasic taxonomic study was performed on a previously unidentified gram-positive, facultatively anaerobic, diphtheroid-shaped organism isolated from a vaginal discharge of a horse. Comparative 16S rRNA gene sequencing demonstrated that the strain was a member of the genus Arcanobacterium, but sequence divergence values of >4% with described species of this genus (viz: Arcanobacterium haemolyticum, Arcanobacterium bernardiae, Arcanobacterium phocae, Arcanobacterium pluranimalium and Arcanobacterium pyogenes) demonstrated that the isolate represented a novel species. The unknown bacterium was readily distinguished from other Arcanobacterium species by biochemical tests. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as Arcanobacterium hippocoleae sp. nov. The type strain of A. hippocoleae is CCUG 44697T (= CIP 106850T).
Resumo:
An unknown gram-positive, catalase-positive, strictly aerobic, rod-shaped bacterium was isolated from the nasal cavities of two common seals. Chemical analysis revealed the presence in the bacterium of a hitherto unknown cell-wall murein [type: L-Lys-L-Ala2-Gly(2-3)-L-Ala (Gly)]. Comparative 16S rRNA gene sequencing showed that the unidentified rod was related to the Arthrobacter group of organisms, although sequence divergence values of >3% from established members of this genus indicated that it represents a novel species. On the basis of phenotypic and phylogenetic considerations, it is proposed that the unknown bacterium from seals (Phoca vitulina) be classified as a novel species, Arthrobacter nasiphocae sp. nov. The type strain of Arthrobacter nasiphocae is CCUG 42953T.
Resumo:
Three strains of a gram-negative, blood or serum requiring, rod-shaped bacterium recovered from human clinical specimens were characterised by phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing showed the unknown rod-shaped strains are members of the same species as some fastidious isolates recovered from human blood specimens and previously designated "Leptotrichia sanguinegens". Based on phylogenetic and phenotypic evidence, it is proposed that the isolates from human sources be classified in a new genus Sneathia, as Sneathia sanguinegens gen. nov., sp. nov. The type strain of Sneathia sanguinegens is CCUG 41628T.
Resumo:
An unusual gram-positive, catalase-negative, facultatively anaerobic, coccus-shaped organism that originated from a juvenile elephant seal was characterized by phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing showed that the unknown coccus represents a new subline within the genus Facklamia. The unknown strain was readily distinguishable from all currently recognized species of the genus Facklamia (Facklamia hominis, Facklamia languida, Facklamia ignava, Facklamia sourekii and Facklamia tabacinasalis) by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as Facklamia miroungae sp. nov. The type strain of F. miroungae is CCUG 42728T (= CIP 106764T). F. miroungae is the first member of the genus Facklamia to be isolated from an animal other than man.
Resumo:
An unusual Actinomyces-like bacterium originating from a pig with mastitis was subjected to a polyphasic taxonomic investigation. The morphological and biochemical characteristics of the organism were consistent with its preliminary assignment to the genus Actinomyces but it did not appear to correspond to any recognized species. PAGE analysis of whole-cell proteins confirmed the phenotypic distinctiveness of the bacterium and 16S rRNA gene sequence analysis demonstrated that it represents a hitherto unknown sub-line amongst a cluster of Actinomyces species which embraces Actinomyces canis, Actinomyces georgiae, Actinomyces hyovaginalis, Actinomyces meyeri, Actinomyces odontolyticus, Actinomyces radingae and Actinomyces turicensis. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium isolated from pig mastitis be classified as Actinomyces suimastitidis sp. nov. The type strain of Actinomyces suimastitidis is CCUG 39279T (= CIP 106779T).
Resumo:
An unknown Gram-positive rod-shaped bacterium was isolated from skin scrapings from the infected head of a sheep and subjected to a polyphasic taxonomic analysis. Chemical analysis revealed the presence of straight-chain and monounsaturated fatty acids and short-chain (C32-C36) mycolic acids consistent with the genus Corynebacterium. Comparative 16S rRNA gene sequencing confirmed that the unknown rod was a member of the genus Corynebacterium, with the organism forming a distinct sub-line and displaying greater than 3% sequence divergence with established species. The unknown Corynebacterium isolate was readily distinguished from recognized species of the genus by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium from a sheep be classified in the genus Corynebacterium, as Corynebacterium capitovis sp. nov. The type strain of Corynebacterium capitovis is CCUG 39779T (= CIP 106739T).
Resumo:
Seven strains of an unknown Gram-positive catalase-negative chain-forming coccus-shaped organism isolated from clinical specimens from sheep were characterized by phenotypic and molecular taxonomic methods. Comparative 16S rRNA gene sequencing studies demonstrated that the bacterium represents a new sub-line within the genus Streptococcus. The unknown bacterium was readily distinguished from recognized streptococcal species by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified as Streptococcus ovis sp. nov. The type strain of Streptococcus ovis is CCUG 39485T (= LMG 19174T).
Resumo:
An Actinomyces-like bacterium was recovered from two dogs. Based on cellular morphology and biochemical criteria, the unknown bacterium resembled the genus Actinomyces but it did not appear to correspond to any of the currently recognized species of this genus. PAGE analysis of whole-cell proteins confirmed that the strain was phenotypically distinct from all other Actinomyces species and comparative 16S rRNA gene sequencing showed that the bacterium represents an unknown sub-line within the genus. Based on phenotypic and phylogenetic evidence, it is proposed that the bacterium from dogs be classified as a new species of the genus Actinomyces, Actinomyces catuli. The type strain of Actinomyces catuli is CCUG 41709T (= CIP 106507T).
Resumo:
Three strains of a previously undescribed Actinomyces-like bacterium were isolated from samples taken from two dead seals and a porpoise. Biochemical testing and PAGE analysis of whole-cell proteins indicated the strains were phenotypically similar to each other but different from previously described Actinomyces and Arcanobacterium species. Comparative 16S rRNA gene sequencing studies showed the organisms from marine animals were genetically closely related and represent a hitherto unknown subline within the genus Actinomyces (sequence divergence values > 6% with recognized species). Based on phylogenetic and phenotypic evidence it is proposed that the unknown bacterium from the seals and a porpoise should be classified as Actinomyces marimammalium sp. nov. The type strain is CCUG 41710T.
Resumo:
An unknown Gram-positive, catalase-negative, ovoid-shaped bacterium isolated from the submandibular abscess of a rabbit was subjected to a polyphasic taxonomic analysis. Comparative 16S rRNA gene sequencing demonstrated the unknown coccus represents a new subline within the genus Gemella. The unknown isolate was readily distinguished from other recognized members of the genus Gemella, namely Gemella haemolysans, Gemella bergeri, Gemella morbillorum, Gemella palaticanis and Gemella sanguinis, by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium is classified in the genus Gemella as Gemella cuniculi sp. nov. The type strain is CCUG 42726T.