189 resultados para Eddy flux


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eddy-covariance measurements of carbon dioxide fluxes were taken semi-continuously between October 2006 and May 2008 at 190 m height in central London (UK) to quantify emissions and study their controls. Inner London, with a population of 8.2 million (~5000 inhabitants per km2) is heavily built up with 8% vegetation cover within the central boroughs. CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). The measurement period allowed investigation of both diurnal patterns and seasonal trends. Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity that controlled the seasonal variability. Despite measurements being taken at ca. 22 times the mean building height, coupling with street level was adequate, especially during daytime. Night-time saw a higher occurrence of stable or neutral stratification, especially in autumn and winter, which resulted in data loss in post-processing. No significant difference was found between the annual estimate of net exchange of CO2 for the expected measurement footprint and the values derived from the National Atmospheric Emissions Inventory (NAEI), with daytime fluxes differing by only 3%. This agreement with NAEI data also supported the use of the simple flux footprint model which was applied to the London site; this also suggests that individual roughness elements did not significantly affect the measurements due to the large ratio of measurement height to mean building height.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of the ionospheric E-region during total solar eclipses have been used to provide information about the evolution of the solar magnetic field and EUV and X-ray emissions from the solar corona and chromosphere. By measuring levels of ionisation during an eclipse and comparing these measurements with an estimate of the unperturbed ionisation levels (such as those made during a control day, where available) it is possible to estimate the percentage of ionising radiation being emitted by the solar corona and chromosphere. Previously unpublished data from the two eclipses presented here are particularly valuable as they provide information that supplements the data published to date. The eclipse of 23 October 1976 over Australia provides information in a data gap that would otherwise have spanned the years 1966 to 1991. The eclipse of 4 December 2002 over Southern Africa is important as it extends the published sequence of measurements. Comparing measurements from eclipses between 1932 and 2002 with the solar magnetic source flux reveals that changes in the solar EUV and X-ray flux lag the open source flux measurements by approximately 1.5 years. We suggest that this unexpected result comes about from changes to the relative size of the limb corona between eclipses, with the lag representing the time taken to populate the coronal field with plasma hot enough to emit the EUV and X-rays ionising our atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar irradiance measurements from a new high density urban network in London are presented. Annual averages demonstrate that central London receives 30 ± 10 Wm-2 less solar irradiance than outer London at midday, equivalent to 9 ± 3% less than the London average. Particulate matter and AERONET measurements combined with radiative transfer modeling suggest that the direct aerosol radiative effect could explain 33 to 40% of the inner London deficit and a further 27 to 50% could be explained by increased cloud optical depth due to the aerosol indirect effect. These results have implications for solar power generation and urban energy balance models. A new technique using ‘Langley flux gradients’ to infer aerosol column concentrations over clear periods of three hours has been developed and applied to three case studies. Comparisons with particulate matter measurements across London have been performed and demonstrate that the solar irradiance measurement network is able to detect aerosol distribution across London and transport of a pollution plume out of London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled atmosphere‐ocean general circulation models have a tendency to drift away from a realistic climatology. The modelled climate response to an increase of CO2 concentration may be incorrect if the simulation of the current climate has significant errors, so in many models, including ours, the drift is counteracted by applying prescribed fluxes of heat and fresh water at the ocean‐atmosphere interface in addition to the calculated surface exchanges. Since the additional fluxes do not have a physical basis, the use of this technique of “flux adjustment” itself introduces some uncertainty in the simulated response to increased CO2. We find that the global‐average temperature response of our model to CO2 increasing at 1% per year is about 30% less without flux adjustment than with flux adjustment. The geographical patterns of the response are similar, indicating that flux adjustment is not causing any gross distortion. The reduced size of the response is due to more effective vertical transport of heat into the ocean, and a somewhat smaller climate sensitivity. Although the response in both cases lies within the generally accepted range for the climate sensitivity, systematic uncertainties of this size are clearly undesirable, and the best strategy for future development is to improve the climate model in order to reduce the need for flux adjustment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Svalgaard and Cliver (2010) recently reported a consensus between the various reconstructions of the heliospheric field over recent centuries. This is a significant development because, individually, each has uncertainties introduced by instrument calibration drifts, limited numbers of observatories, and the strength of the correlations employed. However, taken collectively, a consistent picture is emerging. We here show that this consensus extends to more data sets and methods than reported by Svalgaard and Cliver, including that used by Lockwood et al. (1999), when their algorithm is used to predict the heliospheric field rather than the open solar flux. One area where there is still some debate relates to the existence and meaning of a floor value to the heliospheric field. From cosmogenic isotope abundances, Steinhilber et al. (2010) have recently deduced that the near-Earth IMF at the end of the Maunder minimum was 1.80 ± 0.59 nT which is considerably lower than the revised floor of 4nT proposed by Svalgaard and Cliver. We here combine cosmogenic and geomagnetic reconstructions and modern observations (with allowance for the effect of solar wind speed and structure on the near-Earth data) to derive an estimate for the open solar flux of (0.48 ± 0.29) × 1014 Wb at the end of the Maunder minimum. By way of comparison, the largest and smallest annual means recorded by instruments in space between 1965 and 2010 are 5.75 × 1014 Wb and 1.37 × 1014 Wb, respectively, set in 1982 and 2009, and the maximum of the 11 year running means was 4.38 × 1014 Wb in 1986. Hence the average open solar flux during the Maunder minimum is found to have been 11% of its peak value during the recent grand solar maximum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sun's open magnetic field, magnetic flux dragged out into the heliosphere by the solar wind, varies by approximately a factor of 2 over the solar cycle. We consider the evolution of open solar flux in terms of a source and loss term. Open solar flux creation is likely to proceed at a rate dependent on the rate of photospheric flux emergence, which can be roughly parameterized by sunspot number or coronal mass ejection rate, when available. The open solar flux loss term is more difficult to relate to an observable parameter. The supersonic nature of the solar wind means open solar flux can only be removed by near-Sun magnetic reconnection between open solar magnetic field lines, be they open or closed heliospheric field lines. In this study we reconstruct open solar flux over the last three solar cycles and demonstrate that the loss term may be related to the degree to which the heliospheric current sheet (HCS) is warped, i.e., locally tilted from the solar rotation direction. This can account for both the large dip in open solar flux at the time of sunspot maximum as well as the asymmetry in open solar flux during the rising and declining phases of the solar cycle. The observed cycle-to-cycle variability is also well matched. Following Sheeley et al. (2001), we attribute modulation of open solar flux by the degree of warp of the HCS to the rate at which opposite polarity open solar flux is brought together by differential rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concerns the modeling of membrane distillation. The model developed has been used to predict permeate fluxes using different initial operating conditions. PVDF and PTFE membranes were successfully used in a flat plate module to experimentally confirm the theoretical results. The correlation between theory and experiment was close for both membranes. The PTFE membranes produced higher fluxes than PVDF. A Versapor membrane was also used for this work. This membrane is a composite, with a thin porous layer on a support layer. It was found not to be suitable for membrane distillation. A comparison of the heat flux was also carried out. Again, there was good correlation between theory and experiment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consistency of ensemble forecasts from three global medium-range prediction systems with the observed transition behaviour of a three-cluster model of the North Atlantic eddy-driven jet is examined. The three clusters consist of a mid jet cluster taken to represent an undisturbed jet and south and north jet clusters representing southward and northward shifts of the jet. The ensemble forecasts span a period of three extended winters (October–February) from October 2007–February 2010. The mean probabilities of transitions between the clusters calculated from the ensemble forecasts are compared with those calculated from a 23-extended-winter climatology taken from the European Centre for Medium-Range Weather Forecasts 40-Year Re-analysis (ERA40) dataset. No evidence of a drift with increasing lead time of the ensemble forecast transition probabilities towards values inconsistent with the 23-extended-winter climatology is found. The ensemble forecasts of transition probabilities are found to have positive Brier Skill at 15 day lead times. It is found that for the three-extended-winter forecast set, probabilistic forecasts initialized in the north jet cluster are generally less skilful than those initialized in the other clusters. This is consistent with the shorter persistence time-scale of the north jet cluster observed in the ERA40 23-extended-winter climatology. Copyright © 2011 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interchange reconnection at the Sun, that is, reconnection between a doubly-connected field loop and singly-connected or open field line that extends to infinity, has important implications for the heliospheric magnetic flux budget. Recent work on the topic is reviewed, with emphasis on two aspects. The first is a possible heliospheric signature of interchange reconnection at the coronal hole boundary, where open fields meet closed loops. The second aspect concerns the means by which the heliospheric magnetic field strength reached record-lows during the recent solar minimum period. A new implication of this work is that interchange reconnection may be responsible for the puzzling, occasional coincidence of the heliospheric current sheet and the interface between fast and slow flow in the solar wind.