246 resultados para Dataset
Resumo:
An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979–2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichón eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichón eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed.
Resumo:
A new class of shape features for region classification and high-level recognition is introduced. The novel Randomised Region Ray (RRR) features can be used to train binary decision trees for object category classification using an abstract representation of the scene. In particular we address the problem of human detection using an over segmented input image. We therefore do not rely on pixel values for training, instead we design and train specialised classifiers on the sparse set of semantic regions which compose the image. Thanks to the abstract nature of the input, the trained classifier has the potential to be fast and applicable to extreme imagery conditions. We demonstrate and evaluate its performance in people detection using a pedestrian dataset.
Resumo:
Multiple linear regression is used to diagnose the signal of the 11-yr solar cycle in zonal-mean zonal wind and temperature in the 40-yr ECMWF Re-Analysis (ERA-40) dataset. The results of previous studies are extended to 2008 using data from ECMWF operational analyses. This analysis confirms that the solar signal found in previous studies is distinct from that of volcanic aerosol forcing resulting from the eruptions of El Chichón and Mount Pinatubo, but it highlights the potential for confusion of the solar signal and lower-stratospheric temperature trends. A correction to an error that is present in previous results of Crooks and Gray, stemming from the use of a single daily analysis field rather than monthly averaged data, is also presented.
Resumo:
A digital resource, which aims to become a comprehensive catalogue of all known species of organisms on Earth.
Resumo:
The differential phase (ΦDP) measured by polarimetric radars is recognized to be a very good indicator of the path integrated by rain. Moreover, if a linear relationship is assumed between the specific differential phase (KDP) and the specific attenuation (AH) and specific differential attenuation (ADP), then attenuation can easily be corrected. The coefficients of proportionality, γH and γDP, are, however, known to be dependent in rain upon drop temperature, drop shapes, drop size distribution, and the presence of large drops causing Mie scattering. In this paper, the authors extensively apply a physically based method, often referred to as the “Smyth and Illingworth constraint,” which uses the constraint that the value of the differential reflectivity ZDR on the far side of the storm should be low to retrieve the γDP coefficient. More than 30 convective episodes observed by the French operational C-band polarimetric Trappes radar during two summers (2005 and 2006) are used to document the variability of γDP with respect to the intrinsic three-dimensional characteristics of the attenuating cells. The Smyth and Illingworth constraint could be applied to only 20% of all attenuated rays of the 2-yr dataset so it cannot be considered the unique solution for attenuation correction in an operational setting but is useful for characterizing the properties of the strongly attenuating cells. The range of variation of γDP is shown to be extremely large, with minimal, maximal, and mean values being, respectively, equal to 0.01, 0.11, and 0.025 dB °−1. Coefficient γDP appears to be almost linearly correlated with the horizontal reflectivity (ZH), differential reflectivity (ZDR), and specific differential phase (KDP) and correlation coefficient (ρHV) of the attenuating cells. The temperature effect is negligible with respect to that of the microphysical properties of the attenuating cells. Unusually large values of γDP, above 0.06 dB °−1, often referred to as “hot spots,” are reported for 15%—a nonnegligible figure—of the rays presenting a significant total differential phase shift (ΔϕDP > 30°). The corresponding strongly attenuating cells are shown to have extremely high ZDR (above 4 dB) and ZH (above 55 dBZ), very low ρHV (below 0.94), and high KDP (above 4° km−1). Analysis of 4 yr of observed raindrop spectra does not reproduce such low values of ρHV, suggesting that (wet) ice is likely to be present in the precipitation medium and responsible for the attenuation and high phase shifts. Furthermore, if melting ice is responsible for the high phase shifts, this suggests that KDP may not be uniquely related to rainfall rate but can result from the presence of wet ice. This hypothesis is supported by the analysis of the vertical profiles of horizontal reflectivity and the values of conventional probability of hail indexes.
Resumo:
Fluctuations in the solar wind plasma and magnetic field are well described by the sum of two power law distributions. It has been postulated that these distributions are the result of two independent processes: turbulence, which contributes mainly to the smaller fluctuations, and crossing the boundaries of flux tubes of coronal origin, which dominates the larger variations. In this study we explore the correspondence between changes in the magnetic field with changes in other solar wind properties. Changes in density and temperature may result from either turbulence or coronal structures, whereas changes in composition, such as the alpha-to-proton ratio are unlikely to arise from in-transit effects. Observations spanning the entire ACE dataset are compared with a null hypothesis of no correlation between magnetic field discontinuities and changes in other solar wind parameters. Evidence for coronal structuring is weaker than for in-transit turbulence, with only ∼ 25% of large magnetic field discontinuities associated with a significant change in the alpha-to-proton ratio, compared to ∼ 40% for significant density and temperature changes. However, note that a lack of detectable alpha-to-proton signature is not sufficient to discount a structure as having a solar origin.
Resumo:
This paper examines if shell oxygen isotope ratios (d18Oar) of Unio sp. can be used as a proxy of past discharge of the river Meuse. The proxy was developed from a modern dataset for the reference time interval 1997–2007, which showed a logarithmic relationship between discharge and measured water oxygen isotope ratios(d18Ow). To test this relationship for past time intervals,d18Oar values were measured in the aragonite of the growth increments of four Unio sp. shells; two from a relatively wet period and two from a very dry time interval (1910–1918 and 1969–1977, respectively). Shell d18Oar records were converted into d18Ow values using existing water temperature records. Summer d18Ow values, reconstructed from d18Oar of 1910–1918, showed a similar range as the summer d18Ow values for the reference time interval 1997–2007, whilst summer reconstructed d18Ow values for the time interval 1969–1977 were anomalously high. These high d18Ow values suggest that the river Meuse experienced severe summer droughts during the latter time interval. d18Ow values were then applied to calculate discharge values. It was attempted to estimate discharge from the reconstructed d18Ow values using the logarithmic relationship between d18Ow and discharge. A comparison of the calculated summer discharge results with observed discharge data showed that Meuse low-discharge events below a threshold value of 6 m3/s can be detected in the reconstructed d18Ow records, but true quantification remains problematic.
Resumo:
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UKMeteorological Office Hadley Centre’s climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is underestimated (over-estimated) over wet (dry) regions of southern Africa.
Resumo:
Understanding the onset of coronal mass ejections (CMEs) is surely one of the holy grails of solar physics today. Inspection of data from the Heliospheric Imagers (HI), which are part of the SECCHI instrument suite aboard the two NASA STEREO spacecraft, appears to have revealed pre-eruption signatures which may provide valuable evidence for identifying the CME onset mechanism. Specifically, an examination of the HI images has revealed narrow rays comprised of a series of outward-propagating plasma blobs apparently forming near the edge of the streamer belt prior to many CME eruptions. In this pilot study, we inspect a limited dataset to explore the significance of this phenomenon, which we have termed a pre-CME ‘fuse’. Although, the enhanced expulsion of blobs may be consistent with an increase in the release of outward-propagating blobs from the streamers themselves, it could also be interpreted as evidence for interchange reconnection in the period leading to a CME onset. Indeed, it is argued that the latter could even have implications for the end-of-life of CMEs. Thus, the presence of these pre-CME fuses provides evidence that the CME onset mechanism is either related to streamer reconnection processes or the reconnection between closed field lines in the streamer belt and adjacent, open field lines. We investigate the nature of these fuses, including their timing and location with respect to CME launch sites, as well as their speed and topology.
Resumo:
We test the response of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval algorithm for MSG SEVIRI to changes in the aerosol properties used in the dust aerosol model, using data from the Dust Outflow and Deposition to the Ocean (DODO) flight campaign in August 2006. We find that using the observed DODO free tropospheric aerosol size distribution and refractive index increases simulated top of the atmosphere radiance at 0.55 µm assuming a fixed erosol optical depth of 0.5 by 10–15 %, reaching a maximum difference at low solar zenith angles. We test the sensitivity of the retrieval to the vertical distribution f the aerosol and find that this is unimportant in determining simulated radiance at 0.55 µm. We also test the ability of the ORAC retrieval when used to produce the GlobAerosol dataset to correctly identify continental aerosol outflow from the African continent and we find that it poorly constrains aerosol speciation. We develop spatially and temporally resolved prior distributions of aerosols to inform the retrieval which incorporates five aerosol models: desert dust, maritime, biomass burning, urban and continental. We use a Saharan Dust Index and the GEOS-Chem chemistry transport model to describe dust and biomass burning aerosol outflow, and compare AOD using our speciation against the GlobAerosol retrieval during January and July 2006. We find AOD discrepancies of 0.2–1 over regions of intense biomass burning outflow, where AOD from our aerosol speciation and GlobAerosol speciation can differ by as much as 50 - 70 %.
Resumo:
The application of oxygen isotope ratios ({delta}18O) from freshwater bivalves as a proxy for river discharge conditions in the Rhine and Meuse rivers is investigated. We compared a dataset of water temperature and water {delta}18O values with a selection of recent shell {delta}18O records for two species of the genus Unio in order to establish: (1) whether differences between the rivers in water {delta}18O values, reflecting river discharge conditions, are recorded in unionid shells; and (2) to what extent ecological parameters influence the accuracy of bivalve shell {delta}18O values as proxies of seasonal, water oxygen isotope conditions in these rivers. The results show that shells from the two rivers differ significantly in {delta}18O values, reflecting different source waters for these two rivers. The seasonal shell {delta}18O records show truncated sinusoidal patterns with narrow peaks and wide troughs, caused by temperature fractionation and winter growth cessation. Interannual growth rate reconstructions show an ontogenetic growth rate decrease. Growth lines in the shell often, but not always, coincide with winter growth cessations in the {delta}18O record, suggesting that growth cessations in the shell {delta}18O records are a better age estimator than counting internal growth lines. Seasonal predicted and measured {delta}18O values correspond well, supporting the hypothesis that these unionids precipitate their shells in oxygen isotopic equilibrium. This means that (sub-) fossil unionids can be used to reconstruct spring-summer river discharge conditions, such as Meuse low-discharge events caused by droughts and Rhine meltwater-influx events caused by melting of snow in the Alps.
Resumo:
This article reassesses the debate over the role of education in farm production in Bangladesh using a large dataset on rice producing households from 141 villages. Average and stochastic production frontier functions are estimated to ascertain the effect of education on productivity and efficiency. A full set of proxies for farm education stock variables are incorporated to investigate the ‘internal’ as well as ‘external’ returns to education. The external effect is investigated in the context of rural neighbourhoods. Our analysis reveals that in addition to raising rice productivity and boosting potential output, household education significantly reduces production inefficiencies. However, we are unable to find any evidence of the externality benefit of schooling – neighbour's education does not matter in farm production. We discuss the implication of these findings for rural education programmes in Bangladesh.
Resumo:
The consistency of precipitation variability estimated from the multiple satellite-based observing systems is assessed. There is generally good agreement between TRMM TMI, SSM/I, GPCP and AMSRE datasets for the inter-annual variability of precipitation since 1997 but the HOAPS dataset appears to overestimate the magnitude of variability. Over the tropical ocean the TRMM 3B42 dataset produces unrealistic variabilitys. Based upon deseasonalised GPCP data for the period 1998-2008, the sensitivity of global mean precipitation (P) to surface temperature (T) changes (dP/dT) is about 6%/K, although a smaller sensitivity of 3.6%/K is found using monthly GPCP data over the longer period 1989-2008. Over the tropical oceans dP/dT ranges from 10-30%/K depending upon time-period and dataset while over tropical land dP/dT is -8 to -11%/K for the 1998-2008 period. Analyzing the response of the tropical ocean precipitation intensity distribution to changes in T we find the wetter area P shows a strong positive response to T of around 20%/K. The response over the drier tropical regimes is less coherent and varies with datasets, but responses over the tropical land show significant negative relationships over an interannual time-scale. The spatial and temporal resolutions of the datasets strongly influence the precipitation responses over the tropical oceans and help explain some of the discrepancy between different datasets. Consistency between datasets is found to increase on averaging from daily to 5-day time-scales and considering a 1o (or coarser) spatial resolution. Defining the wet and dry tropical ocean regime by the 60th percentile of P intensity, the 5-day average, 1o TMI data exhibits a coherent drying of the dry regime at the rate of -20%/K and the wet regime becomes wetter at a similar rate with warming.