98 resultados para DYNAMICS SIMULATIONS
Resumo:
Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius-Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that, while such effects are likely small compared to other sources of uncertainty, models with large Arabian Sea cold SST biases suppress the range of potential outcomes for changes to future early monsoon rainfall.
The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century
Resumo:
The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late 20th Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño-3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space-time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.
Resumo:
new rheology that explicitly accounts for the subcontinuum anisotropy of the sea ice cover is implemented into the Los Alamos sea ice model. This is in contrast to all models of sea ice included in global circulation models that use an isotropic rheology. The model contains one new prognostic variable, the local structure tensor, which quantifies the degree of anisotropy of the sea ice, and two parameters that set the time scale of the evolution of this tensor. The anisotropic rheology provides a subcontinuum description of the mechanical behavior of sea ice and accounts for a continuum scale stress with large shear to compression ratio and tensile stress component. Results over the Arctic of a stand-alone version of the model are presented and anisotropic model sensitivity runs are compared with a reference elasto-visco-plastic simulation. Under realistic forcing sea ice quickly becomes highly anisotropic over large length scales, as is observed from satellite imagery. The influence of the new rheology on the state and dynamics of the sea ice cover is discussed. Our reference anisotropic run reveals that the new rheology leads to a substantial change of the spatial distribution of ice thickness and ice drift relative to the reference standard visco-plastic isotropic run, with ice thickness regionally increased by more than 1 m, and ice speed reduced by up to 50%.
Resumo:
A robust feature of the observed response to El Nin˜o–Southern Oscillation (ENSO) is an altered circulation in the lower stratosphere. When sea surface temperatures (SSTs) in the tropical Pacific are warmer there is enhanced upwelling and cooling in the tropical lower stratosphere and downwelling and warming in the midlatitudes, while the opposite is true of cooler SSTs. The midlatitude lower stratospheric response to ENSO is larger in the Southern Hemisphere (SH) than in the Northern Hemisphere (NH). In this study the dynamical version of the Canadian Middle Atmosphere Model (CMAM) is used to simulate 25 realizations of the atmospheric response to the 1982/83 El Nin˜o and the 1973/74 La Nin˜ a. This version ofCMAMis a comprehensive high-top general circulation model that does not include interactive chemistry. The observed lower stratospheric response to ENSO is well reproduced by the simulations, allowing them to be used to investigate the mechanisms involved. Both the observed and simulated responses maximize in December–March and so this study focuses on understanding the mechanisms involved in that season. The response in tropical upwelling is predominantly driven by anomalous transient synoptic-scale wave drag in the SH subtropical lower stratosphere, which is also responsible for the compensating SH midlatitude response. This altered wave drag stems from an altered upward flux of wave activity from the troposphere into the lower stratosphere between 208 and 408S. The altered flux of wave activity can be divided into two distinct components. In the Pacific, the acceleration of the zonal wind in the subtropics from the warmer tropical SSTs results in a region between the midlatitude and subtropical jets where there is an enhanced source of low phase speed eddies. At other longitudes, an equatorward shift of the midlatitude jet from the extratropical tropospheric response to El Nin˜o results in an enhanced source of waves of higher phase speeds in the subtropics. The altered resolved wave drag is only apparent in the SH and the difference between the two hemispheres can be related to the difference in the climatological jet structures in this season and the projection of the wind anomalies associated with ENSO onto those structures.
Resumo:
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional “climate modeling” source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
Resumo:
The link between the Pacific/North American pattern (PNA) and the North Atlantic Oscillation (NAO) is investigated in reanalysis data (NCEP, ERA40) and multi-century CGCM runs for present day climate using three versions of the ECHAM model. PNA and NAO patterns and indices are determined via rotated principal component analysis on monthly mean 500 hPa geopotential height fields using the varimax criteria. On average, the multi-century CGCM simulations show a significant anti-correlation between PNA and NAO. Further, multi-decadal periods with significantly enhanced (high anti-correlation, active phase) or weakened (low correlations, inactive phase) coupling are found in all CGCMs. In the simulated active phases, the storm track activity near Newfoundland has a stronger link with the PNA variability than during the inactive phases. On average, the reanalysis datasets show no significant anti-correlation between PNA and NAO indices, but during the sub-period 1973–1994 a significant anti-correlation is detected, suggesting that the present climate could correspond to an inactive period as detected in the CGCMs. An analysis of possible physical mechanisms suggests that the link between the patterns is established by the baroclinic waves forming the North Atlantic storm track. The geopotential height anomalies associated with negative PNA phases induce an increased advection of warm and moist air from the Gulf of Mexico and cold air from Canada. Both types of advection contribute to increase baroclinicity over eastern North America and also to increase the low level latent heat content of the warm air masses. Thus, growth conditions for eddies at the entrance of the North Atlantic storm track are enhanced. Considering the average temporal development during winter for the CGCM, results show an enhanced Newfoundland storm track maximum in the early winter for negative PNA, followed by a downstream enhancement of the Atlantic storm track in the subsequent months. In active (passive) phases, this seasonal development is enhanced (suppressed). As the storm track over the central and eastern Atlantic is closely related to the NAO variability, this development can be explained by the shift of the NAO index to more positive values.
Resumo:
A common bias among global climate models (GCMs) is that they exhibit tropospheric southern annular mode (SAM) variability that is much too persistent in the Southern Hemisphere (SH) summertime. This is of concern for the ability to accurately predict future SH circulation changes, so it is important that it be understood and alleviated. In this two-part study, specifically targeted experiments with the Canadian Middle Atmosphere Model (CMAM) are used to improve understanding of the enhanced summertime SAM persistence. Given the ubiquity of this bias among comprehensive GCMs, it is likely that the results will be relevant for other climate models. Here, in Part I, the influence of climatological circulation biases on SAM variability is assessed, with a particular focus on two common biases that could enhance summertime SAM persistence: the too-late breakdown of the Antarctic stratospheric vortex and the equatorward bias in the SH tropospheric midlatitude jet. Four simulations are used to investigate the role of each of these biases in CMAM. Nudging and bias correcting procedures are used to systematically remove zonal-mean stratospheric variability and/or remove climatological zonal wind biases. The SAM time-scale bias is not alleviated by improving either the timing of the stratospheric vortex breakdown or the climatological jet structure. Even in the absence of stratospheric variability and with an improved climatological circulation, the model time scales are biased long. This points toward a bias in internal tropospheric dynamics that is not caused by the tropospheric jet structure bias. The underlying cause of this is examined in more detail in Part II of this study.
Resumo:
We have investigated the (001) surface structure of lithium titanate (Li2TiO3) using auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Li2TiO3 is a potential fusion reactor blanket material. After annealing at 1200 K, LEED demonstrated that the Li2TiO3(001) surface was well ordered and not reconstructed. STM imaging showed that terraces are separated in height by about 0.3 nm suggesting a single termination layer. Moreover, hexagonal patterns with a periodicity of ∼0.4 nm are observed. On the basis of molecular dynamics (MD) simulations, these are interpreted as a dynamic arrangement of Li atoms.
Resumo:
The Kalahari region has become a major source of Quaternary palaeoenvironmental data derived primarily from the analysis of geomorphological proxies of environmental change. One suite of data, from palaeolacustrine landforms, has recently provided a new record of major hydrological changes in the last 150 ka [Burrough, S. L., Thomas, D. S. G., Bailey, R. M., 2009. Mega-Lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system. Quaternary Science Reviews, in press.]. Here we present an improved analysis of the drivers and feedbacks of lake level change, utilising information from three main sources: data from the lake system itself, from analyses of other late Quaternary records within the region and from climate modelling. Simulations using the Hadley Centre coupled climate model, HadCM3, suggest that once triggered, the lake body was large enough to potentially affect both local and regional climates. Surface waters and their interactions with the climate are therefore an important component of environmental dynamics during the late Quaternary. Through its capacity to couple Middle Kalahari environments to distant forcing mechanisms and to itself force environmental change, we demonstrate that the existence or absence of megalake Makgadikgadi adds a new level of complexity to the interpretations of environmental proxy records in southern Africa's summer rainfall zone.
Resumo:
We have used the BIOME4 biogeography–biochemistry model and comparison with palaeovegetation data to evaluate the response of six ocean–atmosphere general circulation models to mid-Holocene changes in orbital forcing in the mid- to high-latitudes of the northern hemisphere. All the models produce: (a) a northward shift of the northern limit of boreal forest, in response to simulated summer warming in high-latitudes. The northward shift is markedly asymmetric, with larger shifts in Eurasia than in North America; (b) an expansion of xerophytic vegetation in mid-continental North America and Eurasia, in response to increased temperatures during the growing season; (c) a northward expansion of temperate forests in eastern North America, in response to simulated winter warming. The northward shift of the northern limit of boreal forest and the northward expansion of temperate forests in North America are supported by palaeovegetation data. The expansion of xerophytic vegetation in mid-continental North America is consistent with palaeodata, although the extent may be over-estimated. The simulated expansion of xerophytic vegetation in Eurasia is not supported by the data. Analysis of an asynchronous coupling of one model to an equilibrium-vegetation model suggests vegetation feedback exacerbates this mid-continental drying and produces conditions more unlike the observations. Not all features of the simulations are robust: some models produce winter warming over Europe while others produce winter cooling. As a result, some models show a northward shift of temperate forests (consistent with, though less marked than, the expansion shown by data) and others produce a reduction in temperate forests. Elucidation of the cause of such differences is a focus of the current phase of the Palaeoclimate Modelling Intercomparison Project.
Resumo:
Five paired global climate model experiments, one with an ice pack that only responds thermodynamically (TI) and one including sea-ice dynamics (DI), were used to investigate the sensitivity of Arctic climates to sea-ice motion. The sequence of experiments includes situations in which the Arctic was both considerably colder (Glacial Inception, ca 115,000 years ago) and considerably warmer (3 × CO2) than today. Sea-ice motion produces cooler anomalies year-round than simulations without ice dynamics, resulting in reduced Arctic warming in warm scenarios and increased Arctic cooling in cold scenarios. These changes reflect changes in atmospheric circulation patterns: the DI simulations favor outflow of Arctic air and sea ice into the North Atlantic by promoting cyclonic circulation centered over northern Eurasia, whereas the TI simulations favor southerly inflow of much warmer air from the North Atlantic by promoting cyclonic circulation centered over Greenland. The differences between the paired simulations are sufficiently large to produce different vegetation cover over >19% of the land area north of 55°N, resulting in changes in land-surface characteristics large enough to have an additional impact on climate. Comparison of the DI and TI experiments for the mid-Holocene (6000 years ago) with paleovegetation reconstructions suggests the incorporation of sea-ice dynamics yields a more realistic simulation of high-latitude climates. The spatial pattern of sea-ice anomalies in the warmer-than-modern DI experiments strongly resembles the observed Arctic Ocean sea-ice dipole structure in recent decades, consistent with the idea that greenhouse warming is already impacting the high-northern latitudes.
Resumo:
Runoff fields over northern Africa (10–25°N, 20°W–30°E) derived from 17 atmospheric general circulation models driven by identical 6 ka BP orbital forcing, sea surface temperatures, and CO2 concentration have been analyzed using a hydrological routing scheme (HYDRA) to simulate changes in lake area. The AGCM-simulated runoff produced six-fold differences in simulated lake area between models, although even the largest simulated changes considerably underestimate the observed changes in lake area during the mid-Holocene. The inter-model differences in simulated lake area are largely due to differences in simulated runoff (the squared correlation coefficient, R2, is 0.84). Most of these differences can be attributed to differences in the simulated precipitation (R2=0.83). The higher correlation between runoff and simulated lake area (R2=0.92) implies that simulated differences in evaporation have a contributory effect. When runoff is calculated using an offline land-surface scheme (BIOME3), the correlation between runoff and simulated lake area is (R2=0.94). Finally, the spatial distribution of simulated precipitation can exert an important control on the overall response.
Resumo:
Seventeen simulations of the Last Glacial Maximum (LGM) climate have been performed using atmospheric general circulation models (AGCM) in the framework of the Paleoclimate Modeling Intercomparison Project (PMIP). These simulations use the boundary conditions for CO2, insolation and ice-sheets; surface temperatures (SSTs) are either (a) prescribed using CLIMAP data set (eight models) or (b) computed by coupling the AGCM with a slab ocean (nine models). The present-day (PD) tropical climate is correctly depicted by all the models, except the coarser resolution models, and the simulated geographical distribution of annual mean temperature is in good agreement with climatology. Tropical cooling at the LGM is less than at middle and high latitudes, but greatly exceeds the PD temperature variability. The LGM simulations with prescribed SSTs underestimate the observed temperature changes except over equatorial Africa where the models produce a temperature decrease consistent with the data. Our results confirm previous analyses showing that CLIMAP (1981) SSTs only produce a weak terrestrial cooling. When SSTs are computed, the models depict a cooling over the Pacific and Indian oceans in contrast with CLIMAP and most models produce cooler temperatures over land. Moreover four of the nine simulations, produce a cooling in good agreement with terrestrial data. Two of these model results over ocean are consistent with new SST reconstructions whereas two models simulate a homogeneous cooling. Finally, the LGM aridity inferred for most of the tropics from the data, is globally reproduced by the models with a strong underestimation for models using computed SSTs.
Resumo:
The inhibitory effects of toxin-producing phytoplankton (TPP) on zooplankton modulate the dynamics of marine plankton. In this article, we employ simple mathematical models to compare theoretically the dynamics of phytoplankton–zooplankton interaction in situations where the TPP are present with those where TPP are absent. We consider two sets of three-component interaction models: one that does not include the effect of TPP and the other that does. The negative effects of TPP on zooplankton is described by a non-linear interaction term. Extensive theoretical analyses of the models have been performed to understand the qualitative behaviour of the model systems around every possible equilibria. The results of local-stability analysis and numerical simulations demonstrate that the two model-systems differ qualitatively with regard to oscillations and stability. The model system that does not include TPP is asymptotically stable around the coexisting equilibria, whereas, the system that includes TPP oscillates for a range of parametric values associated with toxin-inhibition rate and competition coefficients. Our analysis suggests that the qualitative dynamics of the plankton–zooplankton interactions are very likely to alter due to the presence of TPP species, and therefore the effects of TPP should be considered carefully while modelling plankton dynamics.
Resumo:
In recent years, computational fluid dynamics (CFD) has been widely used as a method of simulating airflow and addressing indoor environment problems. The complexity of airflows within the indoor environment would make experimental investigation difficult to undertake and also imposes significant challenges on turbulence modelling for flow prediction. This research examines through CFD visualization how air is distributed within a room. Measurements of air temperature and air velocity have been performed at a number of points in an environmental test chamber with a human occupant. To complement the experimental results, CFD simulations were carried out and the results enabled detailed analysis and visualization of spatial distribution of airflow patterns and the effect of different parameters to be predicted. The results demonstrate the complexity of modelling human exhalation within a ventilated enclosure and shed some light into how to achieve more realistic predictions of the airflow within an occupied enclosure.