84 resultados para Cutting of thin metal sheets
Resumo:
We report here a unique chiral hybrid gallium sulfide, [NC2H8]2[Ga10S16(N2C12H12)(NC2H7)2] 1, consisting of helical chains of organically-functionalised supertetrahedral clusters which form quadruple-stranded helical nanotubes of ca. 3 nm diameter. This material therefore consists of discrete metal-organic nanotubes which, to the best of our knowledge, are extremely rare. Whilst solvothermal reactions involving 1,2-di(4-pyridyl)ethylene (DPE) resulted in the formation of such single-walled chiral nanotubes, the use of longer 4,4’-trimethylenedipyridine (TMP) ligands resulted in the synthesis of a two-dimensional hybrid gallium sulfide, [C5H6N]3[Ga10S16(OH)(N2C13H14)] 2 in which, for the first time, inorganic and organic linkages between supertetrahedral clusters coexist.
Resumo:
The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere towards dawn and out of the ionosphere towards dusk, linked by a westward electrojet. We use multi-spacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 Jan 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft travelled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal sub-structure on scales of 100~km at altitudes of 4,000-7,000~km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120-240~s after Cluster 4 at 1,300-2,000~km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the pre-onset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs) we conclude that significant questions remain for the explanation of SCW structuring by BBF driven ``wedgelets". Our results therefore represent constraints on future modelling and theoretical frameworks on the generation of the SCW.
Resumo:
Enantioselective heterogeneous hydrogenation of Cdouble bond; length as m-dashO bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no “particle size effect” on the adsorption mode of the tartaric acid in the particle size range ~ 90–~ 300 nm.
Resumo:
We evaluate the ability of process based models to reproduce observed global mean sea-level change. When the models are forced by changes in natural and anthropogenic radiative forcing of the climate system and anthropogenic changes in land-water storage, the average of the modelled sea-level change for the periods 1900–2010, 1961–2010 and 1990–2010 is about 80%, 85% and 90% of the observed rise. The modelled rate of rise is over 1 mm yr−1 prior to 1950, decreases to less than 0.5 mm yr−1 in the 1960s, and increases to 3 mm yr−1 by 2000. When observed regional climate changes are used to drive a glacier model and an allowance is included for an ongoing adjustment of the ice sheets, the modelled sea-level rise is about 2 mm yr−1 prior to 1950, similar to the observations. The model results encompass the observed rise and the model average is within 20% of the observations, about 10% when the observed ice sheet contributions since 1993 are added, increasing confidence in future projections for the 21st century. The increased rate of rise since 1990 is not part of a natural cycle but a direct response to increased radiative forcing (both anthropogenic and natural), which will continue to grow with ongoing greenhouse gas emissions
Resumo:
Lipid cubic phase films are of increasingly widespread importance, both in the analysis of the cubic phases themselves by techniques including microscopy and X-ray scattering, and in their applications, especially as electrode coatings for electrochemical sensors and for templates for the electrodeposition of nanostructured metal. In this work we demonstrate that the crystallographic orientation adopted by these films is governed by minimization of interfacial energy. This is shown by the agreement between experimental data obtained using grazing-incidence small-angle X-ray scattering (GI-SAXS), and the predicted lowest energy orientation determined using a theoretical approach we have recently developed. GI-SAXS data show a high degree of orientation for films of both the double diamond phase and the gyroid phase, with the [111] and [110] directions respectively perpendicular to the planar substrate. In each case, this matches the lowest energy facet calculated for that particular phase.
Resumo:
Background Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis. Results The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg−1 (n = 3; ± std dev) per individual amino acid); the CaCO3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22–35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν2: ν4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. Conclusions ACC present in earthworm CaCO3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components.
Resumo:
Weather and climate model simulations of the West African Monsoon (WAM) have generally poor representation of the rainfall distribution and monsoon circulation because key processes, such as clouds and convection, are poorly characterized. The vertical distribution of cloud and precipitation during the WAM are evaluated in Met Office Unified Model simulations against CloudSat observations. Simulations were run at 40-km and 12-km horizontal grid length using a convection parameterization scheme and at 12-km, 4-km, and 1.5-km grid length with the convection scheme effectively switched off, to study the impact of model resolution and convection parameterization scheme on the organisation of tropical convection. Radar reflectivity is forward-modelled from the model cloud fields using the CloudSat simulator to present a like-with-like comparison with the CloudSat radar observations. The representation of cloud and precipitation at 12-km horizontal grid length improves dramatically when the convection parameterization is switched off, primarily because of a reduction in daytime (moist) convection. Further improvement is obtained when reducing model grid length to 4 km or 1.5 km, especially in the representation of thin anvil and mid-level cloud, but three issues remain in all model configurations. Firstly, all simulations underestimate the fraction of anvils with cloud top height above 12 km, which can be attributed to too low ice water contents in the model compared to satellite retrievals. Secondly, the model consistently detrains mid-level cloud too close to the freezing level, compared to higher altitudes in CloudSat observations. Finally, there is too much low-level cloud cover in all simulations and this bias was not improved when adjusting the rainfall parameters in the microphysics scheme. To improve model simulations of the WAM, more detailed and in-situ observations of the dynamics and microphysics targeting these non-precipitating cloud types are required.
Resumo:
The transfer of Cd and Zn from soils amended with sewage sludge was followed through a food chain consisting of wheat, aphids and the predator Coccinella septempunctata. Multiple regression models were generated to predict the concentrations of Cd and Zn in C. septempunctata. No significant model could be generated for Cd, indicting that the concentration of this metal was maintained within relatively narrow limits. A model predicting 64% of the variability in the Zn concentration of C. septempunctata was generated from of the concentration of Zn in the diet, time and rate of Zn consumption. The results suggest that decreasing the rate of food consumption is an effective mechanism to prevent the accumulation of Zn and that the availability of Zn in the aphid prey increased with the concentration in the aphids. The results emphasise the importance of using ecologically relevant food chains and exposure pathways during ecotoxicological studies.
Resumo:
The effect of infestation by the aphid Metopolophium dirhodum on the concentration and mass partitioning of Cd and Zn was studied in wheat plants. Results show that infestation did not affect the concentration of either metal in the roots or shoots of wheat, but elevated concentrations in the ears. This appeared to result from the concentration of metal in the smaller ear mass of infested plants. Infestation did not significantly affect the mass partitioning of either metal in any part of the plant, some 10% of both metals being allocated to the roots. However, the two metals contrasted in their partitioning in the aerial parts of the plant, with ca. 60% of Cd mass partitioned in the shoots and ca. 67% of Zn mass partitioned in the ears. The possible effects of infestation on the transfer of Cd and Zn from the soil to cereal aphids are discussed.