82 resultados para Cost Estimation System
Resumo:
A low cost, compact embedded design approach for actuating soft robots is presented. The complete fabrication procedure and mode of operation was demonstrated, and the performance of the complete system was also demonstrated by building a microcontroller based hardware system which was used to actuate a soft robot for bending motion. The actuation system including the electronic circuit board and actuation components was embedded in a 3D-printed casing to ensure a compact approach for actuating soft robots. Results show the viability of the system in actuating and controlling siliconebased soft robots to achieve bending motions. Qualitative measurements of uniaxial tensile test, bending distance and pressure were obtained. This electronic design is easy to reproduce and integrate into any specified soft robotic device requiring pneumatic actuation.
Resumo:
With the increase in e-commerce and the digitisation of design data and information,the construction sector has become reliant upon IT infrastructure and systems. The design and production process is more complex, more interconnected, and reliant upon greater information mobility, with seamless exchange of data and information in real time. Construction small and medium-sized enterprises (CSMEs), in particular,the speciality contractors, can effectively utilise cost-effective collaboration-enabling technologies, such as cloud computing, to help in the effective transfer of information and data to improve productivity. The system dynamics (SD) approach offers a perspective and tools to enable a better understanding of the dynamics of complex systems. This research focuses upon system dynamics methodology as a modelling and analysis tool in order to understand and identify the key drivers in the absorption of cloud computing for CSMEs. The aim of this paper is to determine how the use of system dynamics (SD) can improve the management of information flow through collaborative technologies leading to improved productivity. The data supporting the use of system dynamics was obtained through a pilot study consisting of questionnaires and interviews from five CSMEs in the UK house-building sector.
Resumo:
The predictability of high impact weather events on multiple time scales is a crucial issue both in scientific and socio-economic terms. In this study, a statistical-dynamical downscaling (SDD) approach is applied to an ensemble of decadal hindcasts obtained with the Max-Planck-Institute Earth System Model (MPI-ESM) to estimate the decadal predictability of peak wind speeds (as a proxy for gusts) over Europe. Yearly initialized decadal ensemble simulations with ten members are investigated for the period 1979–2005. The SDD approach is trained with COSMO-CLM regional climate model simulations and ERA-Interim reanalysis data and applied to the MPI-ESM hindcasts. The simulations for the period 1990–1993, which was characterized by several windstorm clusters, are analyzed in detail. The anomalies of the 95 % peak wind quantile of the MPI-ESM hindcasts are in line with the positive anomalies in reanalysis data for this period. To evaluate both the skill of the decadal predictability system and the added value of the downscaling approach, quantile verification skill scores are calculated for both the MPI-ESM large-scale wind speeds and the SDD simulated regional peak winds. Skill scores are predominantly positive for the decadal predictability system, with the highest values for short lead times and for (peak) wind speeds equal or above the 75 % quantile. This provides evidence that the analyzed hindcasts and the downscaling technique are suitable for estimating wind and peak wind speeds over Central Europe on decadal time scales. The skill scores for SDD simulated peak winds are slightly lower than those for large-scale wind speeds. This behavior can be largely attributed to the fact that peak winds are a proxy for gusts, and thus have a higher variability than wind speeds. The introduced cost-efficient downscaling technique has the advantage of estimating not only wind speeds but also estimates peak winds (a proxy for gusts) and can be easily applied to large ensemble datasets like operational decadal prediction systems.
Resumo:
We present a novel algorithm for concurrent model state and parameter estimation in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model parameters alongside the model state variables in a sequential filtering system. The method is relatively simple to implement and computationally inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of the method via a series of identical twin experiments with three simple dynamical system models. The scheme is able to recover the parameter values to a good level of accuracy, even when observational data are noisy. We expect this new technique to be easily transferable to much larger models.
Resumo:
Optimal state estimation is a method that requires minimising a weighted, nonlinear, least-squares objective function in order to obtain the best estimate of the current state of a dynamical system. Often the minimisation is non-trivial due to the large scale of the problem, the relative sparsity of the observations and the nonlinearity of the objective function. To simplify the problem the solution is often found via a sequence of linearised objective functions. The condition number of the Hessian of the linearised problem is an important indicator of the convergence rate of the minimisation and the expected accuracy of the solution. In the standard formulation the convergence is slow, indicating an ill-conditioned objective function. A transformation to different variables is often used to ameliorate the conditioning of the Hessian by changing, or preconditioning, the Hessian. There is only sparse information in the literature for describing the causes of ill-conditioning of the optimal state estimation problem and explaining the effect of preconditioning on the condition number. This paper derives descriptive theoretical bounds on the condition number of both the unpreconditioned and preconditioned system in order to better understand the conditioning of the problem. We use these bounds to explain why the standard objective function is often ill-conditioned and why a standard preconditioning reduces the condition number. We also use the bounds on the preconditioned Hessian to understand the main factors that affect the conditioning of the system. We illustrate the results with simple numerical experiments.
Resumo:
Partial budgeting was used to estimate the net benefit of blending Jersey milk in Holstein-Friesian milk for Cheddar cheese production. Jersey milk increases Cheddar cheese yield. However, the cost of Jersey milk is also higher; thus, determining the balance of profitability is necessary, including consideration of seasonal effects. Input variables were based on a pilot plant experiment run from 2012 to 2013 and industry milk and cheese prices during this period. When Jersey milk was used at an increasing rate with Holstein-Friesian milk (25, 50, 75, and 100% Jersey milk), it resulted in an increase of average net profit of 3.41, 6.44, 8.57, and 11.18 pence per kilogram of milk, respectively, and this additional profit was constant throughout the year. Sensitivity analysis showed that the most influential input on additional profit was cheese yield, whereas cheese price and milk price had a small effect. The minimum increase in yield, which was necessary for the use of Jersey milk to be profitable, was 2.63, 7.28, 9.95, and 12.37% at 25, 50, 75, and 100% Jersey milk, respectively. Including Jersey milk did not affect the quantity of whey butter and powder produced. Althoug further research is needed to ascertain the amount of additional profit that would be found on a commercial scale, the results indicate that using Jersey milk for Cheddar cheese making would lead to an improvement in profit for the cheese makers, especially at higher inclusion rates.
Resumo:
Rising greenhouse gas emissions (GHGEs) have implications for health and up to 30 % of emissions globally are thought to arise from agriculture. Synergies exist between diets low in GHGEs and health however some foods have the opposite relationship, such as sugar production being a relatively low source of GHGEs. In order to address this and to further characterise a healthy sustainable diet, we model the effect on UK non-communicable disease mortality and GHGEs of internalising the social cost of carbon into the price of food alongside a 20 % tax on sugar sweetened beverages (SSBs). Developing previously published work, we simulate four tax scenarios: (A) a GHGEs tax of £2.86/tonne of CO2 equivalents (tCO2e)/100 g product on all products with emissions greater than the mean across all food groups (0.36 kgCO2e/100 g); (B) scenario A but with subsidies on foods with emissions lower than 0.36 kgCO2e/100 g such that the effect is revenue neutral; (C) scenario A but with a 20 % sales tax on SSBs; (D) scenario B but with a 20 % sales tax on SSBs. An almost ideal demand system is used to estimate price elasticities and a comparative risk assessment model is used to estimate changes to non-communicable disease mortality. We estimate that scenario A would lead to 300 deaths delayed or averted, 18,900 ktCO2e fewer GHGEs, and £3.0 billion tax revenue; scenario B, 90 deaths delayed or averted and 17,100 ktCO2e fewer GHGEs; scenario C, 1,200 deaths delayed or averted, 18,500 ktCO2e fewer GHGEs, and £3.4 billion revenue; and scenario D, 2,000 deaths delayed or averted and 16,500 ktCO2e fewer GHGEs. Deaths averted are mainly due to increased fibre and reduced fat consumption; a SSB tax reduces SSB and sugar consumption. Incorporating the social cost of carbon into the price of food has the potential to improve health, reduce GHGEs, and raise revenue. The simple addition of a tax on SSBs can mitigate negative health consequences arising from sugar being low in GHGEs. Further conflicts remain, including increased consumption of unhealthy foods such as cakes and nutrients such as salt.