120 resultados para Connectivity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grasslands restoration is a key management tool contributing to the long-term maintenance of insect populations, providing functional connectivity and mitigating against extinction debt across landscapes. As knowledge of grassland insect communities is limited, the lag between the initiation of restoration and the ability of these new habitats to contribute to the successful enhancement of native biodiversity is unclear. Using two long term data sets, we investigate differences in successional trajectories during the establishment of butterfly (11 years) and phytophagous beetle (13 years) communities during the recreation of calcareous grassland. Overall restoration success was higher for the butterflies than the beetles. However, both shared a general pattern of rapidly increasing restoration success over the first five years, awhich approached an asymptote after c. 10 years. The use of pro-active grassland restoration to mitigate against future environmental change therefore needs to account for such time lag if the value of these habitats is to be fully realised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this research was to investigate the changes in neural processing in mild cognitive impairment. We measured phase synchrony, amplitudes, and event-related potentials in veridical and false memory to determine whether these differed in participants with mild cognitive impairment compared with typical, age-matched controls. Empirical mode decomposition phase locking analysis was used to assess synchrony, which is the first time this analysis technique has been applied in a complex cognitive task such as memory processing. The technique allowed assessment of changes in frontal and parietal cortex connectivity over time during a memory task, without a priori selection of frequency ranges, which has been shown previously to influence synchrony detection. Phase synchrony differed significantly in its timing and degree between participant groups in the theta and alpha frequency ranges. Timing differences suggested greater dependence on gist memory in the presence of mild cognitive impairment. The group with mild cognitive impairment had significantly more frontal theta phase locking than the controls in the absence of a significant behavioural difference in the task, providing new evidence for compensatory processing in the former group. Both groups showed greater frontal phase locking during false than true memory, suggesting increased searching when no actual memory trace was found. Significant inter-group differences in frontal alpha phase locking provided support for a role for lower and upper alpha oscillations in memory processing. Finally, fronto-parietal interaction was significantly reduced in the group with mild cognitive impairment, supporting the notion that mild cognitive impairment could represent an early stage in Alzheimer’s disease, which has been described as a ‘disconnection syndrome’.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Food is fundamental to human wellbeing and development. Increased food production remains a cornerstone strategy in the effort to alleviate global food insecurity. But despite the fact that global food production over the past half century has kept ahead of demand, today around one billion people do not have enough to eat, and a further billion lack adequate nutrition. Food insecurity is facing mounting supply-side and demand-side pressures; key among these are climate change, urbanisation, globalisation, population increases, disease, as well as a number of other factors that are changing patterns of food consumption. Many of the challenges to equitable food access are concentrated in developing countries where environmental pressures including climate change, population growth and other socio-economic issues are concentrated. Together these factors impede people's access to sufficient, nutritious food; chiefly through affecting livelihoods, income and food prices. Food security and human development go hand in hand, and their outcomes are co-determined to a significant degree. The challenge of food security is multi-scalar and cross-sector in nature. Addressing it will require the work of diverse actors to bring sustained improvements inhuman development and to reduce pressure on the environment. Unless there is investment in future food systems that are similarly cross-level, cross-scale and cross-sector, sustained improvements in human wellbeing together with reduced environmental risks and scarcities will not be achieved. This paper reviews current thinking, and outlines these challenges. It suggests that essential elements in a successfully adaptive and proactive food system include: learning through connectivity between scales to local experience and technologies high levels of interaction between diverse actors and sectors ranging from primary producers to retailers and consumers, and use of frontier technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use new neutron scattering instrumentation to follow in a single quantitative time-resolving experiment, the three key scales of structural development which accompany the crystallisation of synthetic polymers. These length scales span 3 orders of magnitude of the scattering vector. The study of polymer crystallisation dates back to the pioneering experiments of Keller and others who discovered the chain-folded nature of the thin lamellae crystals which are normally found in synthetic polymers. The inherent connectivity of polymers makes their crystallisation a multiscale transformation. Much understanding has developed over the intervening fifty years but the process has remained something of a mystery. There are three key length scales. The chain folded lamellar thickness is ~ 10nm, the crystal unit cell is ~ 1nm and the detail of the chain conformation is ~ 0.1nm. In previous work these length scales have been addressed using different instrumention or were coupled using compromised geometries. More recently researchers have attempted to exploit coupled time-resolved small-angle and wide-angle x-ray experiments. These turned out to be challenging experiments much related to the challenge of placing the scattering intensity on an absolute scale. However, they did stimulate the possibility of new phenomena in the very early stages of crystallisation. Although there is now considerable doubt on such experiments, they drew attention to the basic question as to the process of crystallisation in long chain molecules. We have used NIMROD on the second target station at ISIS to follow all three length scales in a time-resolving manner for poly(e-caprolactone). The technique can provide a single set of data from 0.01 to 100Å-1 on the same vertical scale. We present the results using a multiple scale model of the crystallisation process in polymers to analyse the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

White matter tractsc onnecting areas involved in speech and motor control were examined using diffusion-tensor imagingingin a sample of peoplewhostutter (n=29) who were heterogeneous with respect to age, sex, handedness and stuttering severity. The goals were to replicate previous findings in developmental stuttering and to extend ourknowledge by evaluating the relationship between white matter differences in people who stutter and factors such as age, sex, handedness and stuttering severity. We replicated previous findings that showed reduced integrity in white matter underlying ventral premotorcortex, cerebral peduncles and posteriorcorpus callosum in people who stutter, relative to controls. Tractography analysis additionally revealed significantly reduced white matter integrity in the arcuate fasciculus bilaterally and the left corticospinal tract and significantly reduced connectivity within theleft corticobulbar tract in people who stutter. Region-of-interest analyses revealed reduced white matter integrity in people whostutter in the three pairs ocerebellar peduncles thatcarry the afferent and efferent fibers of the cerebellum. Within thegroup of people who stutter, the higher the stuttering severity index, the lower the white matter integrity in the leftangular gyrus but the greater the white matter connectivity in theleft corticobulbartract. Also,in people who stutter, handedness and age predicted the integrity of the corticospinal tract and peduncles, respectively. Further studies are needed to determine which of these white matter differences relate to the neural basis of stuttering and which reflect experience-dependent plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spontaneous activity of the brain at rest frequently has been considered a mere backdrop to the salient activity evoked by external stimuli or tasks. However, the resting state of the brain consumes most of its energy budget, which suggests a far more important role. An intriguing hint comes from experimental observations of spontaneous activity patterns, which closely resemble those evoked by visual stimulation with oriented gratings, except that cortex appeared to cycle between different orientation maps. Moreover, patterns similar to those evoked by the behaviorally most relevant horizontal and vertical orientations occurred more often than those corresponding to oblique angles. We hypothesize that this kind of spontaneous activity develops at least to some degree autonomously, providing a dynamical reservoir of cortical states, which are then associated with visual stimuli through learning. To test this hypothesis, we use a biologically inspired neural mass model to simulate a patch of cat visual cortex. Spontaneous transitions between orientation states were induced by modest modifications of the neural connectivity, establishing a stable heteroclinic channel. Significantly, the experimentally observed greater frequency of states representing the behaviorally important horizontal and vertical orientations emerged spontaneously from these simulations. We then applied bar-shaped inputs to the model cortex and used Hebbian learning rules to modify the corresponding synaptic strengths. After unsupervised learning, different bar inputs reliably and exclusively evoked their associated orientation state; whereas in the absence of input, the model cortex resumed its spontaneous cycling. We conclude that the experimentally observed similarities between spontaneous and evoked activity in visual cortex can be explained as the outcome of a learning process that associates external stimuli with a preexisting reservoir of autonomous neural activity states. Our findings hence demonstrate how cortical connectivity can link the maintenance of spontaneous activity in the brain mechanistically to its core cognitive functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functional networks of cultured neurons exhibit complex network properties similar to those found in vivo. Starting from random seeding, cultures undergo significant reorganization during the initial period in vitro, yet despite providing an ideal platform for observing developmental changes in neuronal connectivity, little is known about how a complex functional network evolves from isolated neurons. In the present study, evolution of functional connectivity was estimated from correlations of spontaneous activity. Network properties were quantified using complex measures from graph theory and used to compare cultures at different stages of development during the first 5 weeks in vitro. Networks obtained from young cultures (14 days in vitro) exhibited a random topology, which evolved to a small-world topology during maturation. The topology change was accompanied by an increased presence of highly connected areas (hubs) and network efficiency increased with age. The small-world topology balances integration of network areas with segregation of specialized processing units. The emergence of such network structure in cultured neurons, despite a lack of external input, points to complex intrinsic biological mechanisms. Moreover, the functional network of cultures at mature ages is efficient and highly suited to complex processing tasks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Societal concern is growing about the consequences of climate change for food systems and, in a number of regions, for food security. There is also concern that meeting the rising demand for food is leading to environmental degradation thereby exacerbating factors in part responsible for climate change, and further undermining the food systems upon which food security is based. A major emphasis of climate change/food security research over recent years has addressed the agronomic aspects of climate change, and particularly crop yield. This has provided an excellent foundation for assessments of how climate change may affect crop productivity, but the connectivity between these results and the broader issues of food security at large are relatively poorly explored; too often discussions of food security policy appear to be based on a relatively narrow agronomic perspective. To overcome the limitation of current agronomic research outputs there are several scientific challenges where further agronomic effort is necessary, and where agronomic research results can effectively contribute to the broader issues underlying food security. First is the need to better understand how climate change will affect cropping systems including both direct effects on the crops themselves and indirect effects as a result of changed pest and weed dynamics and altered soil and water conditions. Second is the need to assess technical and policy options for either reducing the deleterious impacts or enhancing the benefits of climate change on cropping systems while minimising further environmental degradation. Third is the need to understand how best to address the information needs of policy makers and report and communicate agronomic research results in a manner that will assist the development of food systems adapted to climate change. There are, however, two important considerations regarding these agronomic research contributions to the food security/climate change debate. The first concerns scale. Agronomic research has traditionally been conducted at plot scale over a growing season or perhaps a few years, but many of the issues related to food security operate at larger spatial and temporal scales. Over the last decade, agronomists have begun to establish trials at landscape scale, but there are a number of methodological challenges to be overcome at such scales. The second concerns the position of crop production (which is a primary focus of agronomic research) in the broader context of food security. Production is clearly important, but food distribution and exchange also determine food availability while access to food and food utilisation are other important components of food security. Therefore, while agronomic research alone cannot address all food security/climate change issues (and hence the balance of investment in research and development for crop production vis à vis other aspects of food security needs to be assessed), it will nevertheless continue to have an important role to play: it both improves understanding of the impacts of climate change on crop production and helps to develop adaptation options; and also – and crucially – it improves understanding of the consequences of different adaptation options on further climate forcing. This role can further be strengthened if agronomists work alongside other scientists to develop adaptation options that are not only effective in terms of crop production, but are also environmentally and economically robust, at landscape and regional scales. Furthermore, such integrated approaches to adaptation research are much more likely to address the information need of policy makers. The potential for stronger linkages between the results of agronomic research in the context of climate change and the policy environment will thus be enhanced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain activity can be measured non-invasively with functional imaging techniques. Each pixel in such an image represents a neural mass of about 105 to 107 neurons. Mean field models (MFMs) approximate their activity by averaging out neural variability while retaining salient underlying features, like neurotransmitter kinetics. However, MFMs incorporating the regional variability, realistic geometry and connectivity of cortex have so far appeared intractable. This lack of biological realism has led to a focus on gross temporal features of the EEG. We address these impediments and showcase a "proof of principle" forward prediction of co-registered EEG/fMRI for a full-size human cortex in a realistic head model with anatomical connectivity, see figure 1. MFMs usually assume homogeneous neural masses, isotropic long-range connectivity and simplistic signal expression to allow rapid computation with partial differential equations. But these approximations are insufficient in particular for the high spatial resolution obtained with fMRI, since different cortical areas vary in their architectonic and dynamical properties, have complex connectivity, and can contribute non-trivially to the measured signal. Our code instead supports the local variation of model parameters and freely chosen connectivity for many thousand triangulation nodes spanning a cortical surface extracted from structural MRI. This allows the introduction of realistic anatomical and physiological parameters for cortical areas and their connectivity, including both intra- and inter-area connections. Proper cortical folding and conduction through a realistic head model is then added to obtain accurate signal expression for a comparison to experimental data. To showcase the synergy of these computational developments, we predict simultaneously EEG and fMRI BOLD responses by adding an established model for neurovascular coupling and convolving "Balloon-Windkessel" hemodynamics. We also incorporate regional connectivity extracted from the CoCoMac database [1]. Importantly, these extensions can be easily adapted according to future insights and data. Furthermore, while our own simulation is based on one specific MFM [2], the computational framework is general and can be applied to models favored by the user. Finally, we provide a brief outlook on improving the integration of multi-modal imaging data through iterative fits of a single underlying MFM in this realistic simulation framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neural field models of firing rate activity typically take the form of integral equations with space-dependent axonal delays. Under natural assumptions on the synaptic connectivity we show how one can derive an equivalent partial differential equation (PDE) model that properly treats the axonal delay terms of the integral formulation. Our analysis avoids the so-called long-wavelength approximation that has previously been used to formulate PDE models for neural activity in two spatial dimensions. Direct numerical simulations of this PDE model show instabilities of the homogeneous steady state that are in full agreement with a Turing instability analysis of the original integral model. We discuss the benefits of such a local model and its usefulness in modeling electrocortical activity. In particular, we are able to treat “patchy” connections, whereby a homogeneous and isotropic system is modulated in a spatially periodic fashion. In this case the emergence of a “lattice-directed” traveling wave predicted by a linear instability analysis is confirmed by the numerical simulation of an appropriate set of coupled PDEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Communal Internet access facilities or telecentres are considered a good way to provide connectivity to people who do not possess home connectivity. Attempts are underway to utilize telecentres as eLearning centres providing access to learning materials to students who would otherwise not be able to take up eLearning. This paper reports on the findings of qualitative interviews conducted with 18 undergraduate students from two Sri Lankan universities on their eLearning experiences using communal Internet access centres. The findings suggest that despite the efforts by telecentres to provide a good service to eLearners, there are various problems faced by students including: costs, logistics, scarcity of resources, connectivity speeds, excessive procedures, and lack of support. The experiences of these Sri Lankan students suggest that there is much that needs to be understood about user perspectives in using telecentres, which could help formulate better policies and strategies to support eLearners who depend on communal access facilities.