167 resultados para Computational model of emotion
Resumo:
We examine whether a three-regime model that allows for dormant, explosive and collapsing speculative behaviour can explain the dynamics of the S&P 500. We extend existing models of speculative behaviour by including a third regime that allows a bubble to grow at a steady rate, and propose abnormal volume as an indicator of the probable time of bubble collapse. We also examine the financial usefulness of the three-regime model by studying a trading rule formed using inferences from it, whose use leads to higher Sharpe ratios and end of period wealth than from employing existing models or a buy-and-hold strategy.
Resumo:
Nitrogen adsorption on carbon nanotubes is wide- ly studied because nitrogen adsorption isotherm measurement is a standard method applied for porosity characterization. A further reason is that carbon nanotubes are potential adsorbents for separation of nitrogen from oxygen in air. The study presented here describes the results of GCMC simulations of nitrogen (three site model) adsorption on single and multi walled closed nanotubes. The results obtained are described by a new adsorption isotherm model proposed in this study. The model can be treated as the tube analogue of the GAB isotherm taking into account the lateral adsorbate-adsorbate interactions. We show that the model describes the simulated data satisfactorily. Next this new approach is applied for a description of experimental data measured on different commercially available (and characterized using HRTEM) carbon nanotubes. We show that generally a quite good fit is observed and therefore it is suggested that the observed mechanism of adsorption in the studied materials is mainly determined by adsorption on tubes separated at large distances, so the tubes behave almost independently.
Resumo:
Cultures of cortical neurons grown on multielectrode arrays exhibit spontaneous, robust and recurrent patterns of highly synchronous activity called bursts. These bursts play a crucial role in the development and topological selforganization of neuronal networks. Thus, understanding the evolution of synchrony within these bursts could give insight into network growth and the functional processes involved in learning and memory. Functional connectivity networks can be constructed by observing patterns of synchrony that evolve during bursts. To capture this evolution, a modelling approach is adopted using a framework of emergent evolving complex networks and, through taking advantage of the multiple time scales of the system, aims to show the importance of sequential and ordered synchronization in network function.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
The development of emotional regulation capacities in children at high versus low risk for externalizing disorder was examined in a longitudinal study investigating: a) whether disturbances in emotion regulation precede and predict the emergence of externalizing symptoms; and b) whether sensitive maternal behavior is a significant influence on the development of child emotion regulation. Families experiencing high (n=58) and low (n=63) levels of psychosocial adversity were recruited to the study during pregnancy. Direct observational assessments of child emotion regulation capacities and maternal sensitivity were completed in early infancy, at 12 and 18-months, and at 5-years. Key findings were as follows. First, high risk children showed poorer emotion regulation capacities than their low risk counterparts at every stage of assessment. Second, from 12-months onwards, emotion regulation capacities showed a degree of stability, and were associated with behavioral problems, both concurrently and prospectively. Third, maternal sensitivity was related to child emotion regulation capacities throughout development, with poorer emotion regulation in the high risk group being associated with lower maternal sensitivity. The results are consistent with a causal role for problems in the regulation of negative emotions in the etiology of externalizing psychopathology, and highlight insensitive parenting as a potentially key developmental influence.
Resumo:
The development of an Artificial Neural Network model of UK domestic appliance energy consumption is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 households during the summer of 2010. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with backpropagation training and has a12:10:24architecture.Model outputs include appliance load profiles which can be applied to the fields of energy planning (micro renewables and smart grids), building simulation tools and energy policy.